Quantum derivatives and the Schrodinger equation

被引:30
作者
Ben Adda, F
Cresson, J
机构
[1] King Fahd Univ Petr & Minerals, Hail Community Coll, Dept Math Sci, Hail 72000, Saudi Arabia
[2] Univ Franche Comte, CNRS, UMR 6623, F-25030 Besancon, France
关键词
D O I
10.1016/S0960-0779(03)00339-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take into account non-differentiability and the existence of a minimal resolution for mean representation. This justify heuristic computations made by Nottale in scale-relativity. In particular, the Schrodinger equation is derived via the scale-relativity principle and Newton's fundamental equation of dynamics. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1323 / 1334
页数:12
相关论文
共 17 条
[1]   Scale divergence and differentiability [J].
Ben Adda, F ;
Cresson, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (04) :261-264
[2]   About non-differentiable functions [J].
Ben Adda, F ;
Cresson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :721-737
[3]  
BENADDA F, 2001, DIFFERENTIELLES QUAN
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]   Scale relativity theory for one-dimensional non-differentiable manifolds [J].
Cresson, J .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :553-562
[6]  
CRESSON J, 2001, MEMOIRE HABILITATION, V99
[7]  
DAOUDY K, 1995, 2763 INRIA
[9]  
FEYNMAN R, 1980, C NOB NAT PHYS
[10]  
Feynman R. P., 1965, QUANTUM MECH PATH IN