Bayesian inference-based decision of fatigue life model for metal additive manufacturing considering effects of build orientation and post-processing

被引:17
作者
Doh, Jaehyeok [1 ,2 ]
Raju, Nandhini [3 ,4 ]
Raghavan, Nagarajan [2 ,4 ]
Rosen, David W. [4 ,5 ]
Kim, Samyeon [4 ,6 ]
机构
[1] Gyeongsang Natl Univ, Sch Mech Engn, Jinju Si 52725, Gyeongsangnam D, South Korea
[2] Singapore Univ Technol & Design SUTD, Engn Prod Dev EPD Pillar, 8 Somapah Rd, Singapore 487372, Singapore
[3] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
[4] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, 8 Somapah Rd, Singapore 487372, Singapore
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Jeonju Univ, Dept Mech Syst Engn, Jeonju Si 55069, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Bayesian inference; Metal additive manufacturing; Fatigue life model; Uncertainty quantification; Weighted-Equivalent Metric (WEM); MARAGING-STEEL; 300; MECHANICAL-PROPERTIES; BEHAVIOR; PERFORMANCE; EVOLUTION; STRENGTH; FRACTURE;
D O I
10.1016/j.ijfatigue.2021.106535
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study proposes a Bayesian inference-based decision framework to quantify the physical uncertainty based on fatigue life tests on maraging steel according to post-processing treatments and build orientations. Uncertainty quantification of fatigue life models is performed to determine the most suitable models for the metal additive manufacturing process by employing Bayesian inference. To select one of the fatigue life models, we introduce a weighted-equivalent metric (WEM) to compare the evaluation results from different statistical metrics. By evaluating the WEM value, the logistic model and Zhurkov fatigue life model are identified as the suitable fatigue life models for maraging steel.
引用
收藏
页数:18
相关论文
共 53 条
  • [1] A. Committee, 2004, E73991 ASTM INT
  • [2] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [3] [Anonymous], 2001, E8 ASTM, V0301
  • [4] [Anonymous], 2002, E466 ASTM, V0301
  • [5] Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting
    Bai, Yuchao
    Yang, Yongqiang
    Wang, Di
    Zhang, Mingkang
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 : 116 - 123
  • [6] Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the art
    Barbosa, Joelton Fonseca
    Correia, Jose A. F. O.
    Freire Junior, R. C. S.
    Zhu, Shun-Peng
    De Jesus, Abilio M. P.
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (08)
  • [7] A comparison between S-N Logistic and Kohout-Vechet formulations applied to the fatigue data of old metallic bridges materials
    Barbosa, Joelton Fonseca
    Correia, Jose A. F. O.
    Montenegro, Pedro A.
    Silverio Freire Junior, Raimundo Carlos
    Lesiuk, Grzegorz
    De Jesus, Abilio M. P.
    Calcada, Rui A. B.
    [J]. FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (48): : 400 - 410
  • [8] Basquin OH, 1910, P AM SOC TEST MAT, V10, P625
  • [9] The achievable mechanical properties of SLM produced Maraging Steel 300 components
    Becker, Thorsten Hermann
    Dimitrov, Dimitri
    [J]. RAPID PROTOTYPING JOURNAL, 2016, 22 (03) : 487 - 494
  • [10] S-N Curve Models for Composite Materials Characterisation: An Evaluative Review
    Burhan, Ibrahim
    Kim, Ho Sung
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2018, 2 (03):