On monomial complete permutation polynomials

被引:21
作者
Bartoli, Daniele [1 ]
Giulietti, Massimo [1 ]
Zini, Giovanni [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Permutation polynomials; Complete permutation polynomials; Bent-negabent boolean functions; FINITE-FIELDS;
D O I
10.1016/j.ffa.2016.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate monomials ax(d) over the finite field with q elements F-q, in the case where the degree d is equal to q-1/q'-1 + 1 with q = (q')(n) for some n. For n = 6 we explicitly list all a's for which ax(d) is a complete permutation polynomial (CPP) over F-q. Some previous characterization results by Wu et al. for n = 4 are also made more explicit by providing a complete list of a's such that ax(d) is a CPP. For odd n, we show that if q is large enough with respect to n then ax(d) cannot be a CPP over F-q, unless q is even, n equivalent to 3 (mod 4), and the trace Tr-Fq/Fq' (a(-1)) is equal to 0. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:132 / 158
页数:27
相关论文
共 19 条
[1]  
BARTOCCI U, 1971, ACTA ARITH, V18, P423
[2]  
Bartoli D., COMPLETE PERMU UNPUB
[3]   Permutation and complete permutation polynomials [J].
Bassalygo, L. A. ;
Zinoviev, V. A. .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 :198-211
[4]  
Bassalygo L. A., PREPRINT
[5]  
Bassalygo L. A., 2014, 14 INT WORKSH ALG CO, P57
[6]   Cubic monomial bent functions:: A subclass of M [J].
Charpin, Pascale ;
Kyureghyan, Gohar M. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :650-665
[7]  
Franze E., THESIS
[8]  
Hirschfeld J.W.P., 2008, PRINCETON SER APPL M
[9]   Permutation polynomials over finite fields - A survey of recent advances [J].
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 :82-119
[10]  
Ma J., ARXIV150605525