Precise rates in complete moment convergence for ρ-mixing sequences

被引:5
作者
Zhao, Yuexu [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Appl Math & Engn Computat, Hangzhou 310018, Peoples R China
关键词
precise rates; complete moment convergence; rho-mixing; mixing rates;
D O I
10.1016/j.jmaa.2007.06.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-1, X-2,... be a strictly stationary sequence of rho-mixing random variables with mean zeros and positive, finite variances, set S-n = X-1 + center dot center dot center dot + X-n. Suppose that lim(n)-> ESn2/n = sigma(2) > 0, Sigma(infinity)(n=1) rho(2/q) (2(n)) < infinity, where q > 2 delta + 2. We prove that, if EX12(log(+) vertical bar X-1 vertical bar)(delta) < infinity for any 0 < delta <= 1, then [GRAPHICS] where N is the standard normal random variable. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 22 条
[1]   A CENTRAL LIMIT-THEOREM FOR STATIONARY RHO-MIXING SEQUENCES WITH INFINITE VARIANCE [J].
BRADLEY, RC .
ANNALS OF PROBABILITY, 1988, 16 (01) :313-332
[2]  
BRADLEY RC, 1984, ROCKY MOUNTAIN J MAT, V17, P95
[3]  
Chow Y. S., 1988, B I MATH ACAD SINICA, V16, P177
[4]   CENTRAL LIMIT-THEOREMS FOR MIXING SEQUENCES OF RANDOM-VARIABLES UNDER MINIMAL CONDITIONS [J].
DEHLING, H ;
DENKER, M ;
PHILIPP, W .
ANNALS OF PROBABILITY, 1986, 14 (04) :1359-1370
[5]   Precise asymptotics in the Baum-Katz and Davis laws of large numbers of p-mixing sequences [J].
Huang, W ;
Jiang, Y ;
Zhang, LX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (05) :1057-1070
[6]  
IBRAGIMOV IA, 1975, PROBAB THEORY APPL, V20, P134
[7]  
Kolmogorov AN, 1960, PROBAB THEORY APPL, V2, P222
[8]   Precise asymptotics in complete moment convergence of moving-average processes [J].
Li, Yun-Xia .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (13) :1305-1315
[9]   Precise asymptotics for a new kind of complete moment convergence [J].
Liu, Weidong ;
Lin, Zhengyan .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (16) :1787-1799
[10]   AN INVARIANCE-PRINCIPLE FOR PHI-MIXING SEQUENCES [J].
PELIGRAD, M .
ANNALS OF PROBABILITY, 1985, 13 (04) :1304-1313