Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism

被引:26
|
作者
VandenAkker, Corianne C. [1 ,8 ]
Schleeger, Michael [2 ,9 ]
Bruinen, Anne L. [1 ,10 ]
Deckert-Gaudig, Tanja [3 ,5 ]
Velikov, Krassimir P. [4 ]
Heeren, Ron M. A. [1 ,10 ]
Deckert, Volker [3 ,6 ,7 ]
Bonn, Mischa [2 ]
Koenderink, Gijsje H. [1 ]
机构
[1] FOM Inst AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[2] Max Planck Inst Polymer Res, Dept Mol Spect, Ackermannweg 10, D-55128 Mainz, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[4] Univ Utrecht, Dept Phys & Astron, Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[5] Unilever Res Labs, Olivier Noortlaan 120, NL-3130 AC Vlaardingen, Netherlands
[6] Univ Jena, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[7] Univ Jena, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[8] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[9] Univ Halle Wittenberg, Inst Biochem & Biotechnol, Kurt Mothes Str 3, D-06120 Halle, Saale, Germany
[10] Maastricht Univ, Maastricht MultiModal Mol Imaging Inst, Univ Singel 50, NL-6229 ER Maastricht, Netherlands
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2016年 / 120卷 / 34期
关键词
ENHANCED RAMAN-SPECTROSCOPY; SECONDARY STRUCTURE ANALYSES; SUM-FREQUENCY GENERATION; BETA-LACTOGLOBULIN; MISFOLDING DISEASES; MOLECULAR-STRUCTURE; CHEMICAL-ANALYSIS; PROTEIN; SURFACE; AGGREGATION;
D O I
10.1021/acs.jpcb.6b05339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amyloid fibrils are a large class of self-assembled protein aggregates that are formed from unstructured peptides and unfolded proteins. The fibrils are characterized by a universal beta-sheet core stabilized by hydrogen bonds, but the molecular structure of the peptide subunits exposed on the fibril surface is variable. Here we show that multimodal spectroscopy using a range of bulk- and surface-sensitive techniques provides a powerful way to dissect variations in the molecular structure of polymorphic amyloid fibrils. As a model system, we use fibrils formed by the milk protein beta-lactoglobulin, whose morphology can be tuned by varying the protein concentration during formation. We investigate the differences in the molecular structure and composition between long, straight fibrils versus short, wormlike fibrils. We show using mass spectrometry that the peptide composition of the two fibril types is similar. The overall molecular structure of the fibrils probed with various bulk-sensitive spectroscopic techniques shows a dominant contribution of the beta-sheet core but no difference in structure between straight and wormlike fibrils. However, when probing specifically the surface of the fibrils with nanometer resolutiori using tip-enhanced Raman spectroscopy (TERS), we find that both fibril types exhibit a heterogeneous surface structure with mainly unordered or alpha-helical structures and that the surface of long, straight fibrils contains markedly more beta-sheet structure than the surface of short, wormlike fibrils. This finding is consistent with previous surface-specific vibrational sum-frequency generation (VSFG) spectroscopic results (VandenAkker et al. J. Am. Chem. Soc., 2011, 133, 18030-18033, DOI: 10.1021/ja206513r). In conclusion, only advanced vibrational spectroscopic techniques sensitive to surface structure such as TERS and VSFG are able to reveal the difference in structure that underlies the distinct morphology and rigidity of different amyloid fibril polymorphs that have been observed for a large range of food and disease-related proteins.
引用
收藏
页码:8809 / 8817
页数:9
相关论文
共 50 条
  • [21] High pressure FT-IR spectroscopic study on the secondary structure changes in insulin amyloid fibril and aggregate
    Taniguchi, Y.
    Takeda, N.
    Ado, K.
    Maeda, R.
    HIGH PRESSURE RESEARCH, 2009, 29 (04) : 676 - 679
  • [22] Fibril formation of polyglutamine repeats: a spectroscopic study
    Heck, B. S.
    Doll, F.
    Popp, A.
    Hauser, K.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S62 - S62
  • [23] Amyloid Fibril Solubility
    Rizzi, L. G.
    Auer, S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (46): : 14631 - 14636
  • [24] AMYLOID FIBRIL FORMATION
    COLACO, CALS
    HARRINGTON, CR
    BIO-TECHNOLOGY, 1994, 12 (09): : 848 - 849
  • [25] Amyloid fibril proteins
    Xing, YM
    Higuchi, K
    MECHANISMS OF AGEING AND DEVELOPMENT, 2002, 123 (12) : 1625 - 1636
  • [26] ON COMPOSITION OF AMYLOID FIBRIL
    ALPER, R
    BINETTE, JP
    MATSUZAK.M
    CALKINS, E
    WINZLER, RJ
    FEDERATION PROCEEDINGS, 1970, 29 (02) : A854 - +
  • [27] A soluble amyloid fibril segment to study aggregate formation
    Jaroch, Stefan
    CHEMMEDCHEM, 2007, 2 (01) : 47 - 49
  • [28] History of the amyloid fibril, amyloid symposia and amyloid journal
    Sipe, JD
    Cohen, AS
    AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2001, 8 : 9 - 10
  • [29] Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly
    Aubrey, Liam D.
    Blakeman, Ben J. F.
    Lutter, Liisa
    Serpell, Christopher J.
    Tuite, Mick F.
    Serpell, Louise C.
    Xue, Wei-Feng
    COMMUNICATIONS CHEMISTRY, 2020, 3 (01)
  • [30] The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism
    Matthew G. Iadanza
    Robert Silvers
    Joshua Boardman
    Hugh I. Smith
    Theodoros K. Karamanos
    Galia T. Debelouchina
    Yongchao Su
    Robert G. Griffin
    Neil A. Ranson
    Sheena E. Radford
    Nature Communications, 9