Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism

被引:26
|
作者
VandenAkker, Corianne C. [1 ,8 ]
Schleeger, Michael [2 ,9 ]
Bruinen, Anne L. [1 ,10 ]
Deckert-Gaudig, Tanja [3 ,5 ]
Velikov, Krassimir P. [4 ]
Heeren, Ron M. A. [1 ,10 ]
Deckert, Volker [3 ,6 ,7 ]
Bonn, Mischa [2 ]
Koenderink, Gijsje H. [1 ]
机构
[1] FOM Inst AMOLF, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[2] Max Planck Inst Polymer Res, Dept Mol Spect, Ackermannweg 10, D-55128 Mainz, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[4] Univ Utrecht, Dept Phys & Astron, Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[5] Unilever Res Labs, Olivier Noortlaan 120, NL-3130 AC Vlaardingen, Netherlands
[6] Univ Jena, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[7] Univ Jena, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[8] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[9] Univ Halle Wittenberg, Inst Biochem & Biotechnol, Kurt Mothes Str 3, D-06120 Halle, Saale, Germany
[10] Maastricht Univ, Maastricht MultiModal Mol Imaging Inst, Univ Singel 50, NL-6229 ER Maastricht, Netherlands
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2016年 / 120卷 / 34期
关键词
ENHANCED RAMAN-SPECTROSCOPY; SECONDARY STRUCTURE ANALYSES; SUM-FREQUENCY GENERATION; BETA-LACTOGLOBULIN; MISFOLDING DISEASES; MOLECULAR-STRUCTURE; CHEMICAL-ANALYSIS; PROTEIN; SURFACE; AGGREGATION;
D O I
10.1021/acs.jpcb.6b05339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amyloid fibrils are a large class of self-assembled protein aggregates that are formed from unstructured peptides and unfolded proteins. The fibrils are characterized by a universal beta-sheet core stabilized by hydrogen bonds, but the molecular structure of the peptide subunits exposed on the fibril surface is variable. Here we show that multimodal spectroscopy using a range of bulk- and surface-sensitive techniques provides a powerful way to dissect variations in the molecular structure of polymorphic amyloid fibrils. As a model system, we use fibrils formed by the milk protein beta-lactoglobulin, whose morphology can be tuned by varying the protein concentration during formation. We investigate the differences in the molecular structure and composition between long, straight fibrils versus short, wormlike fibrils. We show using mass spectrometry that the peptide composition of the two fibril types is similar. The overall molecular structure of the fibrils probed with various bulk-sensitive spectroscopic techniques shows a dominant contribution of the beta-sheet core but no difference in structure between straight and wormlike fibrils. However, when probing specifically the surface of the fibrils with nanometer resolutiori using tip-enhanced Raman spectroscopy (TERS), we find that both fibril types exhibit a heterogeneous surface structure with mainly unordered or alpha-helical structures and that the surface of long, straight fibrils contains markedly more beta-sheet structure than the surface of short, wormlike fibrils. This finding is consistent with previous surface-specific vibrational sum-frequency generation (VSFG) spectroscopic results (VandenAkker et al. J. Am. Chem. Soc., 2011, 133, 18030-18033, DOI: 10.1021/ja206513r). In conclusion, only advanced vibrational spectroscopic techniques sensitive to surface structure such as TERS and VSFG are able to reveal the difference in structure that underlies the distinct morphology and rigidity of different amyloid fibril polymorphs that have been observed for a large range of food and disease-related proteins.
引用
收藏
页码:8809 / 8817
页数:9
相关论文
共 50 条
  • [1] Physical basis of amyloid fibril polymorphism
    William Close
    Matthias Neumann
    Andreas Schmidt
    Manuel Hora
    Karthikeyan Annamalai
    Matthias Schmidt
    Bernd Reif
    Volker Schmidt
    Nikolaus Grigorieff
    Marcus Fändrich
    Nature Communications, 9
  • [2] Physical basis of amyloid fibril polymorphism
    Close, William
    Neumann, Matthias
    Schmidt, Andreas
    Hora, Manuel
    Annamalai, Karthikeyan
    Schmidt, Matthias
    Reif, Bernd
    Schmidt, Volker
    Grigorieff, Nikolaus
    Faendrich, Marcus
    NATURE COMMUNICATIONS, 2018, 9
  • [3] Amyloid Fibril Polymorphism Is under Kinetic Control
    Pellarin, Riccardo
    Schuetz, Philipp
    Guarnera, Enrico
    Caflisch, Amedeo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (42) : 14960 - 14970
  • [4] Spectroscopic Characterization of Amyloid Fibril Formation by Lysozyme
    Myers, Jeffrey K.
    JOURNAL OF CHEMICAL EDUCATION, 2014, 91 (05) : 730 - 733
  • [5] Mechanism of amyloid fibril formation: Deep UV Raman spectroscopic study.
    Xu, M
    Ermolenkov, VV
    He, W
    Lednev, IK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U781 - U781
  • [6] Amyloid fibril polymorphism probed by advanced vibrational spectroscopy
    Lednev, Igor K.
    Kurouski, Dmitry
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2013, 31 : 94 - 95
  • [7] Amyloid fibril polymorphism: a challenge for molecular imaging and therapy
    Faendrich, M.
    Nystrom, S.
    Nilsson, K. P. R.
    Bockmann, A.
    LeVine, H., III
    Hammarstrom, P.
    JOURNAL OF INTERNAL MEDICINE, 2018, 283 (03) : 218 - 237
  • [8] Amyloid fibril polymorphism and cell-specific toxicity in vivo
    Jonson, Maria
    Nystrom, Sofie
    Sandberg, Alexander
    Carlback, Marcus
    Michno, Wojciech
    Hanrieder, Jorg
    Starkenberg, Annika
    Peter, K.
    Nilsson, R.
    Thor, Stefan
    Hammarstrom, Per
    AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2019, 26 : 136 - 137
  • [9] A Clear View of Polymorphism, Twist, and Chirality in Amyloid Fibril Formation
    Volpatti, Lisa R.
    Vendruscolo, Michele
    Dobson, Christopher M.
    Knowles, Tuomas P. J.
    ACS NANO, 2013, 7 (12) : 10443 - 10448
  • [10] Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments
    Tywoniuk, Bartlomiej
    Yuan, Ye
    McCartan, Sarah
    Szydlowska, Beata Maria
    Tofoleanu, Florentina
    Brooks, Bernard R.
    Buchete, Nicolae-Viorel
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (49): : 11535 - 11545