Stochastic Estimation of the Frobenius Norm in the ACA Convergence Criterion

被引:12
作者
Heldring, A. [1 ]
Ubeda, E. [1 ]
Rius, J. M. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Signal Proc & Telecommun, AntennaLab, ES-08034 Barcelona, Spain
关键词
Adaptive cross approximation (ACA); computational electromagnetics; method of moments; ADAPTIVE CROSS APPROXIMATION; ALGORITHM;
D O I
10.1109/TAP.2014.2386306
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The adaptive cross approximation (ACA) algorithm has been used in many fast Integral Equation solvers for electromagnetic Radiation and Scattering problems. It efficiently computes a low rank approximation to the interaction matrix between mutually distant parts of a scattering object. The ACA is an iterative algorithm that needs an accurate and efficient convergence criterion. The evaluation of this criterion may consume a considerable part of the computational resources. This communication presents an efficient new way to evaluate the convergence criterion, using a stochastic approach.
引用
收藏
页码:1155 / 1159
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1998, SEMINUMERICAL ALGORI
[2]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[3]   On the Convergence of the ACA Algorithm for Radiation and Scattering Problems [J].
Heldring, Alex ;
Ubeda, E. ;
Rius, J. M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (07) :3806-3809
[4]   Accelerated Direct Solution of the Method-of-Moments Linear System [J].
Heldring, Alex ;
Tamayo, Jose Maria ;
Ubeda, Eduard ;
Rius, Juan M. .
PROCEEDINGS OF THE IEEE, 2013, 101 (02) :364-371
[5]   Efficient sampling of electromagnetic fields via the adaptive cross approximation [J].
Hislop, Greg ;
Hay, Stuart ;
Hellicar, Andrew .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (12) :3721-3725
[6]   ON THE CONVERGENCE OF THE ACA [J].
Laviada, Jaime ;
Mittra, R. ;
Pino, Marcos R. ;
Las-Heras, Fernando .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2009, 51 (10) :2458-2460
[7]   Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm [J].
Maaskant, Rob ;
Mittra, Raj ;
Tijhuis, Anton .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (11) :3440-3451
[8]  
Moore DS., 2009, Introduction to the practice of statistics, V6
[9]  
Rachev S. T., 2008, Advanced stochastic models, risk assessment, and portfolio optimization
[10]  
Taylor J., 1997, An introduction to error analysis: The Study of Uncertainties in Physical Measurements, P327, DOI DOI 10.1119/5.0150809