Hyperchaotic secure communication via generalized function projective synchronization

被引:64
作者
Wu Xiang-Jun [1 ,2 ]
Wang Hui [2 ]
Lu Hong-Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[2] Henan Univ, Dept Comp Ctr, Inst Complex Intelligent Network Syst, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Chen hyperchaotic system; Generalized function projective synchronization (GFPS); Parameter identification; Secure communication; Modulation; 3-DIMENSIONAL CHAOTIC SYSTEMS; ADAPTIVE SYNCHRONIZATION; LAG SYNCHRONIZATION; UNCERTAIN PARAMETER;
D O I
10.1016/j.nonrwa.2010.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents two different hyperchaotic secure communication schemes by using generalized function projective synchronization (GFPS), where the drive and response systems could be synchronized up to a desired scaling function matrix. The unpredictability of the scaling functions can additionally enhance the security of communication. First, a hyperchaotic secure communication scheme applying GFPS of the uncertain Chen hyperchaotic system is proposed. The transmitted information signal is modulated into the parameter of the Chen hyperchaotic system in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical Chen hyperchaotic systems with unknown parameter asymptotically synchronized; thus, the uncertain parameter of the receiver system is identified. The information signal can be recovered accurately by the estimated parameter. Secondly, another secure communication scheme by the coupled GFPS of the Chen hyperchaotic system is introduced. The information signal transmitted can be extracted exactly through simple operation in the receiver. The corresponding theoretical proofs and numerical simulations demonstrate the validity and feasibility of the proposed hyperchaotic secure communication schemes. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1288 / 1299
页数:12
相关论文
共 33 条
[1]   Adaptive synchronization methods for signal transmission on chaotic carriers [J].
Andrievsky, B .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) :285-293
[2]   Secure communication via multiple parameter modulation in a delayed chaotic system [J].
Bai, EW ;
Lonngren, KE ;
Uçar, A .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1071-1076
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]   Chaotic phase synchronization and desynchronization in an oscillator network for object selection [J].
Breve, Fabricio A. ;
Zhao, Liang ;
Quiles, Marcos G. ;
Macau, Elbert E. N. .
NEURAL NETWORKS, 2009, 22 (5-6) :728-737
[5]   Secure synchronization of a class of chaotic systems from a nonlinear observer approach [J].
Celikovsky, S ;
Chen, GR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (01) :76-82
[6]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[7]  
CHEN G, 1998, PERSPECTIVES APPL
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[10]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496