Spatiotemporal self-similar waves for the (3+1)-dimensional inhomogeneous cubic-quintic nonlinear medium

被引:17
作者
Jiang, Li-Hong [1 ]
Wu, Hong-Yu [2 ]
机构
[1] Lishui Univ, Coll Comp & Informat Engn, Lishui 323000, Peoples R China
[2] Lishui Univ, Coll Math & Phys, Lishui 323000, Peoples R China
关键词
GINZBURG-LANDAU EQUATION; SCHRODINGER-EQUATION; OPTICAL SOLITONS;
D O I
10.1016/j.optcom.2010.12.023
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatiotemporal self-similar waves of the (3+1)-dimensional generalized nonlinear Schrodinger equation, describing propagation of optical pulses in a cubic-quintic nonlinear medium with inhomogeneous dispersion and gain, are derived. A one-to-one correspondence between such self-similar waves and solutions of the constant-coefficient cubic-quintic nonlinear Schrodinger equation exists when two certain compatibility conditions are satisfied. Under these conditions, we discuss dynamical behaviors of self-similar waves in dispersion decreasing fiber. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2022 / 2026
页数:5
相关论文
共 41 条
[21]   A collective variable approach for optical solitons in the cubic-quintic complex Ginzburg-Landau equation with third-order dispersion [J].
Fewo, S. I. ;
Kofane, T. C. .
OPTICS COMMUNICATIONS, 2008, 281 (10) :2893-2906
[22]   Solutions for the propagation of light in nonlinear optical media with spatially inhomogeneous nonlinearities [J].
Hao, Ruiyu ;
Yang, Rongcao ;
Li, Lu ;
Zhou, Guosheng .
OPTICS COMMUNICATIONS, 2008, 281 (05) :1256-1262
[23]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[24]   Exact self-similar solutions of the generalized nonlinear schrodinger equation with distributed coefficients [J].
Kruglov, VI ;
Peacock, AC ;
Harvey, JD .
PHYSICAL REVIEW LETTERS, 2003, 90 (11) :4
[25]   Analytical study of the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates [J].
Lue, Xing ;
Tian, Bo ;
Xu, Tao ;
Cai, Ke-Jie ;
Liu, Wen-Jun .
ANNALS OF PHYSICS, 2008, 323 (10) :2554-2565
[26]   Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrodinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications [J].
Lue, Xing ;
Zhu, Hong-Wu ;
Yao, Zhen-Zhi ;
Meng, Xiang-Hua ;
Zhang, Cheng ;
Zhang, Chun-Yi ;
Tian, Bo .
ANNALS OF PHYSICS, 2008, 323 (08) :1947-1955
[27]   Stable spinning optical solitons in three dimensions [J].
Mihalache, D ;
Mazilu, D ;
Crasovan, LC ;
Towers, I ;
Buryak, AV ;
Malomed, BA ;
Torner, L ;
Torres, JP ;
Lederer, F .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :739021-739024
[28]   EXPERIMENTAL-OBSERVATION OF PICOSECOND PULSE NARROWING AND SOLITONS IN OPTICAL FIBERS [J].
MOLLENAUER, LF ;
STOLEN, RH ;
GORDON, JP .
PHYSICAL REVIEW LETTERS, 1980, 45 (13) :1095-1098
[29]   Modulational instability in the cubic-quintic nonlinear Schrodinger equation through the variational approach [J].
Ndzana, Fabien I. I. ;
Mohamadou, Alidou ;
Kofane, Timoleon Crepin .
OPTICS COMMUNICATIONS, 2007, 275 (02) :421-428
[30]   The similarity of interactions between (3+1)D spatiotemporal optical solitons in both the dispersive medium with cubic-quintic nonlinearity and the saturable medium [J].
Peng Jin-Zhang ;
Yang Hong ;
Tang Yi .
CHINESE PHYSICS B, 2009, 18 (06) :2364-2371