On Fatou-Bieberbach domains

被引:17
作者
Globevnik, J [1 ]
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
D O I
10.1007/PL00004653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:91 / 106
页数:16
相关论文
共 19 条
[1]   FATOU-BIEBERBACH DOMAINS ARISING FROM POLYNOMIAL AUTOMORPHISMS [J].
BEDFORD, E ;
SMILLIE, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :789-792
[2]  
Bochner S., 1948, SEVERAL COMPLEX VARI
[3]   An embedding of C in C-2 with hyperbolic complement [J].
Buzzard, GT ;
Fornaess, JE .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :539-546
[4]   MICHAEL PROBLEM AND THE POINCARE-FATOU-BIEBERBACH PHENOMENON [J].
DIXON, PG ;
ESTERLE, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 15 (02) :127-187
[5]  
ESTERLE J, 1983, LECT NOTES MATH, V1094, P65
[6]   COMPLEX HENON MAPPINGS IN C2 AND FATOU-BIEBERBACH DOMAINS [J].
FORNAESS, JE ;
SIBONY, N .
DUKE MATHEMATICAL JOURNAL, 1992, 65 (02) :345-380
[7]  
Gaier D., 1980, Vorlesungen uber Approximation im Komplexen
[8]   A bounded domain in C-N which embeds holomorphically into CN+1 [J].
Globevnik, J .
ARKIV FOR MATEMATIK, 1997, 35 (02) :313-325
[9]   HOLOMORPHIC EMBEDDINGS OF PLANAR DOMAINS INTO C-2 [J].
GLOBEVNIK, J ;
STENSONES, B .
MATHEMATISCHE ANNALEN, 1995, 303 (04) :579-597
[10]  
Hille E., 1962, ANAL FUNCTION THEORY, V2