Creep and Anisotropy of Free-Standing Lithium Metal Foils in an Industrial Dry Room

被引:9
作者
Dienemann, Lara L. [1 ]
Saigal, Anil [1 ]
Zimmerman, Michael A. [1 ]
机构
[1] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA
关键词
advanced materials characterization; analysis and design of components; devices and systems; batteries; ELASTIC-VISCOPLASTIC MODEL; ELECTROLYTES; DEFORMATION; GROWTH; MECHANICS;
D O I
10.1115/1.4052043
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Commercialization of energy-dense lithium metal batteries relies on stable and uniform plating and stripping on the lithium metal anode. In electrochemical-mechanical modeling of solid-state batteries, there is a lack of consideration of specific mechanical properties of battery-grade lithium metal. Defining these characteristics is crucial for understanding how lithium ions plate on the lithium metal anode, how plating and stripping affect deformation of the anode and its interfacing material, and whether dendrites are suppressed. Recent experiments show that the dominant mode of deformation of lithium metal is creep. This study measures the time and temperature-dependent mechanics of two thicknesses of commercial lithium anodes inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, a directional study examines the anisotropic microstructure of 100 mu m thick lithium anodes and its effect on bulk creep mechanics. It is shown that these lithium anodes undergo plastic creep as soon as a coin cell is manufactured at a pressure of 0.30 MPa, and achieving thinner lithium foils, a critical goal for solid-state lithium batteries, is correlated to anisotropy in both lithium's microstructure and mechanical properties.
引用
收藏
页数:8
相关论文
共 29 条
[11]   New Foundations of Newman's Theory for Solid Electrolytes: Thermodynamics and Transient Balances [J].
Goyal, Priyamvada ;
Monroe, Charles W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) :E3647-E3660
[12]  
Kalpakjian S., 2008, Manufacturing Processes for Engineering Materials
[13]   Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries [J].
Khurana, Rachna ;
Schaefer, Jennifer L. ;
Archer, Lynden A. ;
Coates, Geoffrey W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (20) :7395-7402
[14]   Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries [J].
LePage, William S. ;
Chen, Yuxin ;
Kazyak, Eric ;
Chen, Kuan-Hung ;
Sanchez, Adrian J. ;
Poli, Andrea ;
Arruda, Ellen M. ;
Thouless, M. D. ;
Dasgupta, Neil P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (02) :A89-A97
[15]   Elastic, plastic, and creep mechanical properties of lithium metal [J].
Masias, Alvaro ;
Felten, Nando ;
Garcia-Mendez, Regina ;
Wolfenstine, Jeff ;
Sakamoto, Jeff .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (03) :2585-2600
[16]   The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces [J].
Monroe, C ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A396-A404
[17]   Anisotropic Elastic Properties of Battery Anodes [J].
Nagy, Kyle S. ;
Siegel, Donald J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
[18]   A large deformation elastic-viscoplastic model for lithium [J].
Narayan, Sooraj ;
Anand, Lallit .
EXTREME MECHANICS LETTERS, 2018, 24 :21-29
[19]   Large-deformation plasticity and fracture behavior of pure lithium under various stress states [J].
Sedlatschek, Tobias ;
Lian, Junhe ;
Li, Wei ;
Jiang, Menglei ;
Wierzbicki, Tomasz ;
Bazant, Martin Z. ;
Zhu, Juner .
ACTA MATERIALIA, 2021, 208
[20]   FLOW-STRESS, SUBGRAIN SIZE, AND SUBGRAIN STABILITY AT ELEVATED-TEMPERATURE [J].
SHERBY, OD ;
KLUNDT, RH ;
MILLER, AK .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1977, 8 (06) :843-850