On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity

被引:0
|
作者
Lai, R [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
D O I
10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.3.CO;2-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relativistic Vlasov-Maxwell-Fokker-Planck system is used in modelling distribution of charged; Ir particles in plasma. It consists of a transport equation coupled with the Maxwell system. The diffusion term in the equation models the collisions among particles, whereas the viscosity term signifies the dynamical frictional forces between the particles and the background reservoir. In the case of one space variable and two momentum variables, we prove the existence of a classical solution when the initial density decays fast enough with respect to the momentum variables. The solution which shares this same decay condition along with its first derivatives in the momentum variables is unique. (C) 1998 B; G. Teubner Stuttgart-John Wiley B Sons, Ltd.
引用
收藏
页码:1287 / 1296
页数:10
相关论文
共 41 条
  • [21] On the Cauchy Problem for the Vlasov-Maxwell-Fokker-Planck System in Low Regularity Space
    Fan, Yingzhe
    Tan, Lihua
    SYMMETRY-BASEL, 2025, 17 (01):
  • [22] High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system
    Bostan, Mihai
    Goudon, Thierry
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06): : 1221 - 1251
  • [23] THE GLOBAL CLASSICAL SOLUTION OF THE VLASOV-MAXWELL-FOKKER-PLANCK SYSTEM NEAR MAXWELLIAN
    Chae, Myeongju
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (05): : 1007 - 1025
  • [24] Steady-states solutions of the Vlasov-Maxwell-Fokker-Planck system of proton channeling in crystals
    Bobrovskiy, V. S.
    Kazakov, A. L.
    Rojas, E. M.
    Sinitsyn, A. V.
    Spevak, L. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [25] ON THE ONE AND 1/2 DIMENSIONAL RELATIVISTIC VLASOV-MAXWELL SYSTEM
    GLASSEY, R
    SCHAEFFER, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (02) : 169 - 179
  • [26] The Vlasov-Maxwell-Fokker-Planck system near Maxwellians in Double-struck capital R3
    Wang, Xiaolong
    APPLICABLE ANALYSIS, 2021, 100 (09) : 1843 - 1870
  • [27] THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH UNCERTAINTY AND A ONE-DIMENSIONAL ASYMPTOTIC PRESERVING METHOD
    Zhu, Yuhua
    Jin, Shi
    MULTISCALE MODELING & SIMULATION, 2017, 15 (04): : 1502 - 1529
  • [28] Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one dimension
    Wollman, S
    Ozizmir, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) : 602 - 644
  • [29] A numerical method for the Vlasov-Poisson-Fokker-Planck system in one dimension
    Wollman, S
    Ozizmir, E
    NEURAL, PARALLEL, AND SCIENTIFIC COMPUTATIONS, VOL 2, PROCEEDINGS, 2002, : 179 - 182
  • [30] Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system
    Huot, F
    Ghizzo, A
    Bertrand, P
    Sonnendrücker, E
    Coulaud, O
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (02) : 512 - 531