A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels

被引:103
作者
Wolstencroft, EC [1 ]
Mattis, V [1 ]
Bajer, AA [1 ]
Young, PJ [1 ]
Lorson, CL [1 ]
机构
[1] Univ Missouri, Dept Vet Pathobiol, Life Sci Ctr, Columbia, MO 65211 USA
关键词
D O I
10.1093/hmg/ddi131
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spinal muscular atrophy (SMA) is caused by homozygous loss of the survival motor neuron (SMN1) gene. In virtually all SMA patients, a nearly identical copy gene is present, SMN2. SMN2 cannot fully compensate for the loss of SMN1 because the majority of transcripts derived from SMN2 lack a critical exon (exon 7), resulting in a dysfunctional SMN protein. Therefore, the critical distinction between a functional and a dysfunctional SMN protein is the inclusion or the exclusion of the exon 7 encoded peptide. To determine the role of the 16 amino acids encoded by SMN exon 7, a panel of synthetic mutations were transiently expressed in SMA patient fibroblasts and HeLa cells. Consistent with previous reports, the protein encoded by SMN exons 1-6 was primarily restricted to the nucleus. However, a variety of heterologous sequences fused to the C-terminus of SMN exons 1-6 allowed mutant SMN proteins to properly distribute to the cytoplasm and to the nuclear gems. These data demonstrate that the SMN exon 7 sequence is not specifically required, rather this region functions as a non-specific 'tall' that facilitates proper localization. Therefore, a possible means to restore additional activity to the SMN Delta 7 protein could be to induce a longer C-terminus by suppressing recognition of the native stop codon. To address this possibility, aminoglycosides were examined for their ability to restore detectable levels of SMN protein in SMA patient fibroblasts. Aminoglycosides can suppress the accurate identification of translation termination codons in eukaryotic cells. Consistent with this, treatment of SMA patient fibroblasts with tobramycin and amikacin resulted in a quantitative increase in SMN-positive gems and an overall increase in detectable SMN protein. Taken together, this work describes the role of the critical exon 7 region and identifies a possible alternative approach for therapeutic intervention.
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 56 条
  • [1] Phenylbutyrate increases SMN expression in vitro:: relevance for treatment of spinal muscular atrophy
    Andreassi, C
    Angelozzi, C
    Tiziano, FD
    Vitali, T
    De Vincenzi, E
    Boninsegna, A
    Villanova, M
    Bertini, E
    Pini, A
    Neri, G
    Brahe, C
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2004, 12 (01) : 59 - 65
  • [2] Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients
    Andreassi, C
    Jarecki, J
    Zhou, JH
    Coovert, DD
    Monani, UR
    Chen, XC
    Whitney, M
    Pollok, B
    Zhang, ML
    Androphy, E
    Burghes, AHM
    [J]. HUMAN MOLECULAR GENETICS, 2001, 10 (24) : 2841 - 2849
  • [3] Expression of the survival of motor neuron (SMN) gene in primary neurons and increase in SMN levels by activation of the N-methyl-D-aspartate glutamate receptor
    Andreassi, C
    Patrizi, AL
    Monani, UR
    Burghes, AHM
    Brahe, C
    Eboli, ML
    [J]. NEUROGENETICS, 2002, 4 (01) : 29 - 36
  • [4] Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice
    Barton-Davis, ER
    Cordier, L
    Shoturma, DI
    Leland, SE
    Sweeney, HL
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (04) : 375 - 381
  • [5] Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line
    Bedwell, DM
    Kaenjak, A
    Benos, DJ
    Bebok, Z
    Bubien, JK
    Hong, J
    Tousson, A
    Clancy, JP
    Sorscher, EJ
    [J]. NATURE MEDICINE, 1997, 3 (11) : 1280 - 1284
  • [6] Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy
    Brichta, L
    Hofmann, Y
    Hahnen, E
    Siebzehnrubl, FA
    Raschke, H
    Blumcke, I
    Eyupoglu, IY
    Wirth, B
    [J]. HUMAN MOLECULAR GENETICS, 2003, 12 (19) : 2481 - 2489
  • [7] Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway
    Chang, HC
    Hung, WC
    Chuang, YJ
    Jong, YJ
    [J]. NEUROCHEMISTRY INTERNATIONAL, 2004, 45 (07) : 1107 - 1112
  • [8] Treatment of spinal muscular atrophy by sodium butyrate
    Chang, JG
    Hsieh-Li, HM
    Jong, YJ
    Wang, NM
    Tsai, CH
    Li, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) : 9808 - 9813
  • [9] The survival motor neuron protein in spinal muscular atrophy
    Coovert, DD
    Le, TT
    McAndrew, PE
    Strasswimmer, J
    Crawford, TO
    Mendell, JR
    Coulson, SE
    Androphy, EJ
    Prior, TW
    Burghes, AHM
    [J]. HUMAN MOLECULAR GENETICS, 1997, 6 (08) : 1205 - 1214
  • [10] The neurobiology of childhood spinal muscular atrophy
    Crawford, TO
    Pardo, CA
    [J]. NEUROBIOLOGY OF DISEASE, 1996, 3 (02) : 97 - 110