On the application of substochastic semigroup theory to fragmentation models with mass loss

被引:22
作者
Banasiak, J
Lamb, W
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Natal, Dept Math & Appl Math, ZA-4041 Durban, South Africa
关键词
semigroups of operators; abstract Cauchy problem; multiple fragmentation with mass;
D O I
10.1016/S0022-247X(03)00154-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear integro-differential equation modelling multiple fragmentation with inherent mass loss is investigated by means of substochastic semigroup theory. The existence of a semigroup is established and, under natural conditions on certain coefficients, the generator of this semigroup is identified. This yields, in particular, a validation of the formal mass-loss rate equation for the model. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:9 / 30
页数:22
相关论文
共 20 条
[1]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[2]   A PERTURBATION THEOREM FOR POSITIVE CONTRACTION-SEMIGROUPS ON L1-SPACES WITH APPLICATIONS TO TRANSPORT-EQUATIONS AND KOLMOGOROV DIFFERENTIAL-EQUATIONS [J].
ARLOTTI, L .
ACTA APPLICANDAE MATHEMATICAE, 1991, 23 (02) :129-144
[3]  
Banasiak J, 2000, MATH METHOD APPL SCI, V23, P1237, DOI 10.1002/1099-1476(20000925)23:14<1237::AID-MMA163>3.0.CO
[4]  
2-I
[5]  
Banasiak J, 2001, TAIWAN J MATH, V5, P169
[6]   ABSTRACT TIME-DEPENDENT TRANSPORT-EQUATIONS [J].
BEALS, R ;
PROTOPOPESCU, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (02) :370-405
[7]   EXACT AND ASYMPTOTIC SCALING SOLUTIONS FOR FRAGMENTATION WITH MASS-LOSS [J].
CAI, M ;
EDWARDS, BF ;
HAN, HT .
PHYSICAL REVIEW A, 1991, 43 (02) :656-662
[8]  
Dubovskii PB, 1996, MATH METHOD APPL SCI, V19, P571, DOI 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO
[9]  
2-Q
[10]   RATE-EQUATION AND SCALING FOR FRAGMENTATION WITH MASS-LOSS [J].
EDWARDS, BF ;
CAI, M ;
HAN, HT .
PHYSICAL REVIEW A, 1990, 41 (10) :5755-5757