Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data

被引:12
作者
Davis, Jason A. [1 ,6 ]
Saunders, Sita J. [2 ]
Mann, Martin [2 ]
Backofen, Rolf [2 ,3 ,4 ,5 ]
机构
[1] Univ Freiburg, Inst Anat & Cell Biol, Dept Mol Embryol, Fac Med, D-79104 Freiburg, Germany
[2] Albert Ludwigs Univ Freiburg, Dept Comp Sci, Bioinformat Grp, Georges Kohler Allee 106, D-79110 Freiburg, Germany
[3] Albert Ludwigs Univ Freiburg, ZBSA Ctr Biol Syst Anal, Habsburgerstr 49, D-79104 Freiburg, Germany
[4] Albert Ludwigs Univ Freiburg, BIOSS Ctr Biol Signalling Studies, Cluster Excellence, Freiburg, Germany
[5] Univ Copenhagen, Ctr Noncoding RNA Technol & Hlth, Gronnegardsvej 3, DK-1870 Frederiksberg C, Denmark
[6] Coreva Sci, 198-200 Kaiser Joseph Str, D-79104 Freiburg, Germany
关键词
NEURAL CREST; GENE-EXPRESSION; MICRORNA TARGETS; SUPPRESSES; BETA; PATHWAY; CLUSTER; GROWTH; CANCER; BRAIN;
D O I
10.1093/nar/gkx605
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA-target interactions, compiled using a machine-learning-based meta-analysis of established algorithms. Simultaneously, the inverse dataset of negative interactions not likely to occur was extracted to increase classifier performance, as measured using an expansive set of experimentally validated interactions from a variety of sources. In a second differential mode, candidate miRNAs are predicted by indicating genes to be targeted and others to be avoided to potentially increase specificity of results. As an example, we investigate the neural crest, a transient structure in vertebrate development where miRNAs play a pivotal role. Patterns of metaMIR-predicted miRNA regulation alone partially recapitulated functional relationships among genes, and separate differential analysis revealed miRNA candidates that would downregulate components implicated in cancer progression while not targeting tumour suppressors. Such an approach could aid in therapeutic application of miRNAs to reduce unintended effects. The utility is available at http://rna.informatik.uni-freiburg.de/metaMIR/.
引用
收藏
页码:8745 / 8757
页数:13
相关论文
共 66 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]  
[Anonymous], NUCLEIC ACIDS RES
[3]   Toward a combinatorial nature of microRNA regulation in human cells [J].
Balaga, Ohad ;
Friedman, Yitzhak ;
Linial, Michal .
NUCLEIC ACIDS RESEARCH, 2012, 40 (19) :9404-9416
[4]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[5]   Development and evolution of the neural crest: An overview [J].
Bronner, Marianne E. ;
LeDouarin, Nicole M. .
DEVELOPMENTAL BIOLOGY, 2012, 366 (01) :2-9
[6]   The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1 [J].
Cai, Na ;
Wang, Yi-Dong ;
Zheng, Peng-Sheng .
RNA, 2013, 19 (01) :85-95
[7]   Transforming growth factor β and bone morphogenetic protein actions in brain tumors [J].
Caja, Laia ;
Bellomo, Claudia ;
Moustakas, Aristidis .
FEBS LETTERS, 2015, 589 (14) :1588-1597
[8]   MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability [J].
Choi, Young Eun ;
Pan, Yunfeng ;
Park, Eunmi ;
Konstantinopoulos, Panagiotis ;
De, Subhajyoti ;
D'Andrea, Alan ;
Chowdhury, Dipanjan .
ELIFE, 2014, 3
[9]   MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15+/CD133+ Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma [J].
de Antonellis, Pasqualino ;
Medaglia, Chiara ;
Cusanelli, Emilio ;
Andolfo, Immacolata ;
Liguori, Lucia ;
De Vita, Gennaro ;
Carotenuto, Marianeve ;
Bello, Annamaria ;
Formiggini, Fabio ;
Galeone, Aldo ;
De Rosa, Giuseppe ;
Virgilio, Antonella ;
Scognamiglio, Immacolata ;
Sciro, Manuela ;
Basso, Giuseppe ;
Schulte, Johannes H. ;
Cinalli, Giuseppe ;
Iolascon, Achille ;
Zollo, Massimo .
PLOS ONE, 2011, 6 (09)
[10]   Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis [J].
Dong, P. ;
Karaayvaz, M. ;
Jia, N. ;
Kaneuchi, M. ;
Hamada, J. ;
Watari, H. ;
Sudo, S. ;
Ju, J. ;
Sakuragi, N. .
ONCOGENE, 2013, 32 (27) :3286-3295