Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole, or triadimefon, was administered daily via oral gavage to male Sprague-Dawley rats at doses of 300, 300, or 175 mg/kg, respectively. Urine was collected from all three treatment groups and also from vehicle control rats on day six, following five consecutive days of exposure. Spectra were acquired with a CCD-based dispersive Raman spectrometer, using 785-nm diode laser excitation. To optimize the signal-to-noise ratio, urine samples were filtered through a stirred ultrafiltration cell with a 500 nominal molecular weight limit filter to remove large, unwanted urine components that can degrade the spectrum via fluorescence. However, a subsequent investigation suggested that suitable spectra can be obtained in a high-throughput fashion, with little or no Raman-specific sample preparation. For the sake of comparison, a parallel H-1 NMR-based metabolomic analysis was also conducted on the unfiltered samples. Results from multivariate data analysis demonstrated that the Raman method compares favorably with NMR in regard to the ability to differentiate responses from these three contaminants.