Preclinical Evaluation of 18F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain

被引:58
作者
Celen, Sofie [1 ]
Koole, Michel [2 ]
De Angelis, Meri [3 ]
Sannen, Ivan [1 ]
Chitneni, Satish K. [1 ]
Alcazar, Jesus [3 ]
Dedeurwaerdere, Stefanie [4 ]
Moechars, Dieder [4 ]
Schmidt, Mark [4 ]
Verbruggen, Alfons [1 ]
Langlois, Xavier [4 ]
Van Laere, Koen [2 ]
Andres, Jose Ignacio [3 ]
Bormans, Guy [1 ]
机构
[1] Katholieke Univ Leuven, Lab Radiopharm, Fac Pharmaceut Sci, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Nucl Med, B-3000 Louvain, Belgium
[3] Johnson & Johnson Pharmaceut Res & Dev, Toledo, Spain
[4] Johnson & Johnson Pharmaceut Res & Dev, Beerse, Belgium
关键词
F-18; PET; PDE10A; brain imaging; POSITRON-EMISSION-TOMOGRAPHY; IMMUNOHISTOCHEMICAL LOCALIZATION; DRUG DEVELOPMENT; 10A INHIBITORS; RAT-BRAIN; PDE10A; SCHIZOPHRENIA; CNS; TRANSPORTER; DISCOVERY;
D O I
10.2967/jnumed.110.077040
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Phosphodiesterases are enzymes that inactivate the intracellular second messengers 3',5'-cyclic adenosine-monophosphate and/or cyclic guanosine-monophosphate. Of all 11 known phosphodiesterase families, phosphodiesterase-10A (PDE10A) has the most restricted distribution, with high expression in the striatum. PDE10A inhibitors are pursued as drugs for treatment of neuropsychiatric disorders. We have synthesized and evaluated F-18-JNJ41510417 as a selective and high-affinity radioligand for in vivo brain imaging of PDE10A using PET. Methods: The biodistribution of F-18-JNJ41510417 was evaluated in rats. Rat plasma and perfused brain homogenates were analyzed by high-performance liquid chromatography to quantify radiometabolites. Dynamic small-animal PET was performed in rats and in wild-type and PDE10A knock-out mice and compared with ex vivo autoradiography. Blocking and displacement experiments were performed using the nonradioactive analog and other selective PDE10A inhibitors. Results: Tissue distribution studies showed predominant hepatobiliary excretion, sufficient brain uptake (0.56 +/- 0.00 percentage injected dose at 2 min after tracer injection), and continuous accumulation of the tracer in the striatum over time; rapid washout of nonspecific binding from other brain regions was observed. Polar radiometabolites were detected in plasma and brain tissue. Dynamic small-animal PET showed continuous tracer accumulation in the striatum, with rapid decline in the cortex and cerebellum. Pretreatment and chase experiments with PDE10A inhibitors showed that the tracer binding to PDE10A was specific and reversible. Imaging in PDE10A knock-out and wild-type mice further confirmed that binding in the striatum was specific for PDE10A. Conclusion: Experiments in rats and PDE10A knock-out mice indicate that F-18-JNJ41510417 binds specifically and reversibly to PDE10A in the striatum, suggesting that this new fluorinated quinoline derivative is a promising candidate for in vivo imaging of PDE10A using PET.
引用
收藏
页码:1584 / 1591
页数:8
相关论文
共 27 条
[1]  
Casteels C, 2006, J NUCL MED, V47, P1858
[2]   Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species [J].
Coskran, Timothy M. ;
Morton, Daniel ;
Menniti, Frank S. ;
Adamowicz, Wendy O. ;
Kleiman, Robin J. ;
Ryan, Anne M. ;
Strick, Christine A. ;
Schmidt, Christopher J. ;
Stephenson, Diane T. .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2006, 54 (11) :1205-1213
[3]  
Cunningham Vincent J, 2005, Drug Discov Today Technol, V2, P311, DOI 10.1016/j.ddtec.2005.11.003
[4]   Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties [J].
Ertl, P ;
Rohde, B ;
Selzer, P .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (20) :3714-3717
[5]  
ERTL P, 2010, FAST CALCULATION MOL
[6]   Striatum- and testis-specific phosphodiesterase PDE10A - Isolation and characterization of a rat PDE10A [J].
Fujishige, K ;
Kotera, J ;
Omori, K .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 266 (03) :1118-1127
[7]   PDE inhibitors in psychiatry - future options for dementia, depression and schizophrenia? [J].
Halene, Tobias B. ;
Siegel, Steven J. .
DRUG DISCOVERY TODAY, 2007, 12 (19-20) :870-878
[8]   Linearized reference tissue parametric Imaging methods:: Application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain [J].
Ichise, M ;
Liow, JS ;
Lu, JQ ;
Takano, T ;
Model, K ;
Toyama, H ;
Suhara, T ;
Suzuki, T ;
Innis, RB ;
Carson, TE .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2003, 23 (09) :1096-1112
[9]   The potential therapeutic use of phosphodiesterase 10 inhibitors [J].
Kehler, Jan ;
Ritzen, Andreas ;
Greve, Daniel Rodriguez .
EXPERT OPINION ON THERAPEUTIC PATENTS, 2007, 17 (02) :147-158
[10]   Using positron emission tomography to facilitate CNS drug development [J].
Lee, Chi-Ming ;
Farde, Lars .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2006, 27 (06) :310-316