FLT3 inhibitors for acute myeloid leukemia: successes, defeats, and emerging paradigms

被引:20
作者
Acharya, Baku [1 ]
Saha, Debasmita [1 ]
Armstrong, Daniel [1 ]
Lakkaniga, Naga Rajiv [2 ]
Frett, Brendan [1 ]
机构
[1] Univ Arkansas Med Sci, Dept Pharmaceut Sci, Coll Pharm, Little Rock, AR 72205 USA
[2] Indian Inst Technol, Dept Chem & Chem Biol, Indian Sch Mines, Dhanbad 826004, India
关键词
TYROSINE-KINASE INHIBITOR; INTERNAL TANDEM DUPLICATION; ACUTE MYELOGENOUS LEUKEMIA; RISK MYELODYSPLASTIC SYNDROME; CELLS IN-VITRO; PHASE-I; C INHIBITOR; AML CELLS; MULTIKINASE INHIBITOR; LESTAURTINIB CEP701;
D O I
10.1039/d2md00067a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FLT3 mutations are one of the most common genetic aberrations found in nearly 30% of acute myeloid leukemias (AML). The mutations are associated with poor prognosis despite advances in the understanding of the biological mechanisms of AML. Numerous small molecule FLT3 inhibitors have been developed in an effort to combat AML. Even with the development of these inhibitors, the five-year overall survival for newly diagnosed AML is less than 30%. In 2017, midostaurin received FDA approval to treat AML, which was the first approved FLT3 inhibitor in the U.S. and Europe. Following, gilteritinib received FDA approval in 2018 and in 2019 quizartinib received approval in Japan. This review parallels these clinical success stories along with other pre-clinical and clinical investigations of FLT3 inhibitors.
引用
收藏
页码:798 / 816
页数:19
相关论文
共 133 条
[1]   GENOMIC STRUCTURE OF THE DOWNSTREAM PART OF THE HUMAN FLT3 GENE - EXON/INTRON STRUCTURE CONSERVATION AMONG GENES ENCODING RECEPTOR TYROSINE KINASES (RTK) OF SUBCLASS-III [J].
AGNES, F ;
SHAMOON, B ;
DINA, C ;
ROSNET, O ;
BIRNBAUM, D ;
GALIBERT, F .
GENE, 1994, 145 (02) :283-288
[2]  
[Anonymous], NOVARTIS DRUG RYDAPT
[3]   Inhibition of FLT3 in AML: a focus on sorafenib [J].
Antar, A. ;
Otrock, Z. K. ;
El-Cheikh, J. ;
Kharfan-Dabaja, M. A. ;
Battipaglia, G. ;
Mahfouz, R. ;
Mohty, M. ;
Bazarbachi, A. .
BONE MARROW TRANSPLANTATION, 2017, 52 (03) :344-351
[4]   Antitumor activity of sorafenib in FLT3-driven leukemic cells [J].
Auclair, D. ;
Miller, D. ;
Yatsula, V. ;
Pickett, W. ;
Carter, C. ;
Chang, Y. ;
Zhang, X. ;
Wilkie, D. ;
Burd, A. ;
Shi, H. ;
Rocks, S. ;
Gedrich, R. ;
Abriola, L. ;
Vasavada, H. ;
Lynch, M. ;
Dumas, J. ;
Trail, P. A. ;
Wilhelm, S. M. .
LEUKEMIA, 2007, 21 (03) :439-445
[5]  
Baer MR, 2019, CANC SENSIT AGENTS, V4, P67, DOI 10.1016/B978-0-12-816435-8.00006-7
[6]   Emergence of Polyclonal FLT3 Tyrosine Kinase Domain Mutations during Sequential Therapy with Sorafenib and Sunitinib in FLT3-ITD-Positive Acute Myeloid Leukemia [J].
Baker, Sharyn D. ;
Zimmerman, Eric I. ;
Wang, Yong-Dong ;
Orwick, Shelley ;
Zatechka, Douglas S. ;
Buaboonnam, Jassada ;
Neale, Geoffrey A. ;
Olsen, Scott R. ;
Enemark, Eric J. ;
Shurtleff, Sheila ;
Rubnitz, Jeffrey E. ;
Mullighan, Charles G. ;
Inaba, Hiroto .
CLINICAL CANCER RESEARCH, 2013, 19 (20) :5758-5768
[7]   Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3 [J].
Bali, P ;
George, P ;
Cohen, P ;
Tao, JG ;
Guo, F ;
Sigua, C ;
Vishvanath, A ;
Scuto, A ;
Annavarapu, S ;
Fiskus, W ;
Moscinski, L ;
Atadja, P ;
Bhalla, K .
CLINICAL CANCER RESEARCH, 2004, 10 (15) :4991-4997
[8]  
BRASEL K, 1995, LEUKEMIA, V9, P1212
[9]   Regulation of colony forming cell generation by flt-3 ligand [J].
BrashemStein, C ;
Flowers, DA ;
Bernstein, ID .
BRITISH JOURNAL OF HAEMATOLOGY, 1996, 94 (01) :17-22
[10]  
BROXMEYER HE, 1995, EXP HEMATOL, V23, P1121