Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro

被引:215
作者
Lahiri, Debrupa [1 ]
Rouzaud, Francois
Richard, Tanisha [1 ]
Keshri, Anup K. [1 ]
Bakshi, Srinivasa R. [1 ]
Kos, Lidia
Agarwal, Arvind [1 ]
机构
[1] Florida Int Univ, Miami, FL 33174 USA
基金
美国国家科学基金会;
关键词
Biodegradable polymer composite; Boron nitride nanotube; Mechanical properties; Viability; Cytotoxicity; EPSILON-CAPROLACTONE; CARBON NANOTUBES; MOLECULAR-WEIGHT; ELASTIC-MODULUS; BONE-TISSUE; GLASS; PLA; DEGRADATION; FABRICATION; PROTEINS;
D O I
10.1016/j.actbio.2010.02.044
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biodegradable polylactide-polycaprolactone copolymer (PLC) has been reinforced with 0, 2 and 5 wt.% boron nitride nanotubes (BNNTs) for orthopedic scaffold application. Elastic modulus of the PLC-5 wt.% BNNT composite, evaluated through nanoindentation technique, shows a 1370% increase. The same amount of BNNT addition to PLC enhances the tensile strength by 109%, without any adverse effect on the ductility up to 240% elongation. Interactions of the osteoblasts and macrophages with bare BNNTs prove them to be non-cytotoxic. PLC-BNNT composites displayed increased osteoblast cell viability as compared to the PLC matrix. The addition of BNNTs also resulted in an increase in the expression levels of the Runx2 gene, the main regulator of osteoblast differentiation. These results indicate that BNNT is a potential reinforcement for composites for orthopedic applications. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3524 / 3533
页数:10
相关论文
共 70 条
[1]   Poly(lactic acid)-based biocomposites reinforced with kenaf fibers [J].
Avella, Maurizio ;
Bogoeva-Gaceva, Gordana ;
Bularovska, Aleksandra. ;
Errico, Maria Ernanuela ;
Gentile, Gennaro ;
Grozdanov, Anita .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (06) :3542-3551
[2]   Boron nitride nanotubes-reinforced glass composites [J].
Bansal, NP ;
Hurst, JB ;
Choi, SR .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (01) :388-390
[3]  
Blake T, 1998, J TOXICOL ENV HEAL A, V54, P243
[4]   Stress generation by shape memory alloy wires embedded in polymer composites [J].
Bollas, D. ;
PappaS, P. ;
Parthenios, J. ;
Gallotis, C. .
ACTA MATERIALIA, 2007, 55 (16) :5489-5499
[5]   Autogenous tissue-engineered cartilage -: Evaluation as an implant material [J].
Britt, JC ;
Park, SS .
ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 1998, 124 (06) :671-677
[6]   Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration:: in vitro characterization and human osteoblast response [J].
Causa, F ;
Netti, PA ;
Ambrosio, L ;
Ciapetti, G ;
Baldini, N ;
Pagani, S ;
Martini, D ;
Giunti, A .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 76A (01) :151-162
[7]   New composites of hydroxyapatite and bioresorbable macromolecular material [J].
Cerrai, P ;
Guerra, GD ;
Tricoli, M ;
Krajewski, A ;
Guicciardi, S ;
Ravaglioli, A ;
Maltinti, S ;
Masetti, G .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1999, 10 (05) :283-289
[8]   The structure of crystallisable copolymers of L-lactide, ε-caprolactone and glycolide [J].
Channuan, W ;
Siripitayananon, J ;
Molloy, R ;
Sriyai, M ;
Davis, FJ ;
Mitchell, GR .
POLYMER, 2005, 46 (17) :6411-6428
[9]   Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells [J].
Chen, Xing ;
Wu, Peng ;
Rousseas, Michael ;
Okawa, David ;
Gartner, Zev ;
Zettl, Alex ;
Bertozzi, Carolyn R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :890-+
[10]   A potential material for tissue engineering: Silkworm silk/PLA biocomposite [J].
Cheung, Hoi-Yan ;
Lau, Kin-Tak ;
Tao, Xiao-Ming ;
Hui, David .
COMPOSITES PART B-ENGINEERING, 2008, 39 (06) :1026-1033