Comparison of Deep Reinforcement Learning Algorithms in a Robot Manipulator Control Application

被引:2
|
作者
Chu, Chang [1 ]
Takahashi, Kazuhiko [2 ]
Hashimoto, Masafumi [2 ]
机构
[1] Doshisha Univ, Grad Sch Sci & Engn, Kyoto, Japan
[2] Doshisha Univ, Fac Sci & Engn, Kyoto, Japan
关键词
deep reinforcement learning; robot manipulator; deep deterministic policy gradient (DDPG); distributed distributional deterministic policy gradient (D4PG);
D O I
10.1109/IS3C50286.2020.00080
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this study, we apply deep reinforcement learning (DRL) to control a robot manipulator and investigate its effectiveness by comparing the performance of several DRL algorithms, namely, deep deterministic policy gradient (DDPG) and distributed distributional deterministic policy gradient (D4PG) algorithms. We conducted computational training and testing experiments on a control model for a reaching task of the robot manipulator. Experimental results show that the D4PG algorithm achieves a higher learning success rate than the DDPG algorithm and demonstrate the potential application of DRL for controlling robot manipulators.
引用
收藏
页码:284 / 287
页数:4
相关论文
共 50 条
  • [21] Space Manipulator Collision Avoidance Using a Deep Reinforcement Learning Control
    Blaise, James
    Bazzocchi, Michael C. F.
    AEROSPACE, 2023, 10 (09)
  • [22] Robust Iterative Learning Control Design: Application to a Robot Manipulator
    Tayebi, A.
    Abdul, S.
    Zaremba, M. B.
    Ye, Y.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2008, 13 (05) : 608 - 613
  • [23] A Deep Learning-Based Autonomous Robot Manipulator for Sorting Application
    Bui, Hoang-Dung
    Nguyen, Hai
    La, Hung Manh
    Li, Shuai
    2020 FOURTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2020), 2020, : 298 - 305
  • [24] A General Framework of Motion Planning for Redundant Robot Manipulator Based on Deep Reinforcement Learning
    Li, Xiangjian
    Liu, Huashan
    Dong, Menghua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5253 - 5263
  • [25] Application of Deep Reinforcement Learning in Mobile Robot Path Planning
    Xin, Jing
    Zhao, Huan
    Liu, Ding
    Li, Minqi
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7112 - 7116
  • [26] Sensor Fusion for Robot Control through Deep Reinforcement Learning
    Bohez, Steven
    Verbelen, Tim
    De Coninck, Elias
    Vankeirsbilck, Bert
    Simoens, Pieter
    Dhoedt, Bart
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2365 - 2370
  • [27] Tracking control for mobile robot based on deep reinforcement learning
    Zhang Shansi
    Wang Weiming
    2019 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2019), 2019, : 155 - 160
  • [28] Deep reinforcement learning method for biped robot gait control
    Feng C.
    Zhang Y.
    Huang C.
    Jiang W.
    Wu Z.
    1600, CIMS (27): : 2341 - 2349
  • [29] Deep Reinforcement Learning for Robot Batching Optimization and Flow Control
    Hildebrand, Max
    Andersen, Rasmus S.
    Bogh, Simon
    30TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2021), 2020, 51 : 1462 - 1468
  • [30] Position Control of a Mobile Robot through Deep Reinforcement Learning
    Quiroga, Francisco
    Hermosilla, Gabriel
    Farias, Gonzalo
    Fabregas, Ernesto
    Montenegro, Guelis
    APPLIED SCIENCES-BASEL, 2022, 12 (14):