Micropolar fluid system in a space of distributions and large time behavior

被引:31
作者
Ferreira, L. C. F.
Villamizar-Roa, E. J. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Math, BR-50740 Recife, PE, Brazil
[2] Univ Ind Santander, Bucaramanga 678, Colombia
关键词
micropolar fluid; large time behavior; spaces of distributions;
D O I
10.1016/j.jmaa.2006.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the well-posedness of the initial value problem for the generalized micropolar fluid system in a space of tempered distributions and also prove the existence of the stationary solutions. The asymptotic stability of solutions is showed in this space, and as a consequence, a criterium for vanishing small perturbations of initial data (stationary solution) at large time is obtained. A fast decay of the solutions is obtained when we assume more regularity on the initial data. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1425 / 1445
页数:21
相关论文
共 10 条
[1]   Smooth or singular solutions to the Navier-Stokes system [J].
Cannone, M ;
Karch, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (02) :247-274
[2]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[3]  
Kato T., 1992, BOL SOC BRAS MAT, V22, P127
[4]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[5]  
Lemarie-Rieusset P., 2002, RECENT DEV NAVIER ST
[6]  
Lieb E. H., 2001, ANALYSIS-UK, V14
[7]  
Lukaszewicz G., 1999, Micropolar Fluids: Theory and Applications
[8]  
Ortega-Torres E., 1999, ABSTR APPL ANAL, V4, P109
[9]   Magneto-micropolar fluid motion: Existence and uniqueness of strong solution [J].
RojasMedar, MA .
MATHEMATISCHE NACHRICHTEN, 1997, 188 :301-319
[10]  
Temam R., 1979, NAVIER STOKES EQUATI