Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface flow constructed wetlands

被引:49
作者
Corbella, Clara [1 ]
Garfi, Marianna [1 ]
Puigagut, Jaume [1 ]
机构
[1] Univ Politecn Cataluna, BarcelonaTech, Dept Civil & Environm Engn, GEMMA, C Jordi Girona 1-3,Bldg D1, E-08034 Barcelona, Spain
关键词
Microbial fuel cells; Constructed wetlands; Evapotranspiration; Cathode limitation; Energy production; WASTE-WATER; ELECTRICITY; REMOVAL; TEMPERATURE; GENERATION; DYE;
D O I
10.1016/j.scitotenv.2016.03.170
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The cathode of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs) is generally set in close contact with water surface to provide a rich oxygen environment. However, water level variations caused by plants evapotranspiration in CWs might decrease MFC performance by limiting oxygen transfer to the cathode. Main objective of this work was to quantify the effect of water level variation on MFC performance implemented in HSSF CW. For the purpose of this work two MFCs were implemented within a HSSF CW pilot plant fed with primary treated domestic wastewater. Cell voltage (E-cell) and the relative distance between the cathode and the water level were recorded for one year. Results showed that E-cell was greatly influenced by the relative distance between the cathode and the water level, giving an optimal cathode position of about 1 to 2 cm above water level. Both water level variation and E-cell were daily and seasonal dependent, showing a pronounced day/night variation during warm periods and showing almost no daily variation during cold periods. Energy production under pronounced daily water level variation was 40% lower (80 +/- 56 mWh/m(2) . day) than under low water level variation (131 +/- 61 mWh/m(2) . day). Main conclusion of the present work is that of the performance of MFC implemented in HSSF CW is highly dependent on plants evapotranspiration. Therefore, MFC that are to be implemented in CWs shall be designed to be able to cope with pronounced water level variations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 33 条
[1]   Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes [J].
Ahn, Yongtae ;
Zhang, Fang ;
Logan, Bruce E. .
JOURNAL OF POWER SOURCES, 2014, 247 :655-659
[2]  
[Anonymous], SHORT COMMUNICATION
[3]  
APHA, 2005, Standard Methods for the Examination of Water and Wastewater
[4]   Energy requirements for nitrification and biological nitrogen removal in engineered wetlands [J].
Austin, David ;
Nivala, Jaime .
ECOLOGICAL ENGINEERING, 2009, 35 (02) :184-192
[5]   Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands [J].
Corbella, Clara ;
Guivernau, Miriam ;
Vinas, Marc ;
Puigagut, Jaume .
WATER RESEARCH, 2015, 84 :232-242
[6]   Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: Surveying the optimal scenario for microbial fuel cell implementation [J].
Corbella, Clara ;
Garfi, Marianna ;
Puigagut, Jaume .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 470 :754-758
[7]   Microbial fuel cells generating electricity from rhizodeposits of rice plants [J].
de Schamphelaire, Liesje ;
van den Bossche, Leen ;
Dang, Hai Son ;
Hofte, Monica ;
Boon, Nico ;
Rabaey, Korneel ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (08) :3053-3058
[8]   A review of a recently emerged technology: Constructed wetland - Microbial fuel cells [J].
Doherty, Liam ;
Zhao, Yaqian ;
Zhao, Xiaohong ;
Hu, Yuansheng ;
Hao, Xiaodi ;
Xu, Lei ;
Liu, Ranbin .
WATER RESEARCH, 2015, 85 :38-45
[9]   Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal and spatial fluctuations [J].
Dusek, Jiri ;
Picek, Tomas ;
Cizkova, Hana .
ECOLOGICAL ENGINEERING, 2008, 34 (03) :223-232
[10]   Quantification of the Internal Resistance Distribution of Microbial Fuel Cells [J].
Fan, Yanzhen ;
Sharbrough, Evan ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (21) :8101-8107