Bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation

被引:8
作者
Wang, Juan [1 ]
Chen, Longwei [1 ]
Liu, Changfu [2 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650021, Yunnan, Peoples R China
[2] Wenshan Univ, Dept Math & Phys, Wenshan 663000, Peoples R China
基金
美国国家科学基金会;
关键词
Travelling wave solutions; Nonlinear Schrodinger equation; Dynamical systems; Theory of bifurcation; Phase portraits;
D O I
10.1016/j.amc.2014.10.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the travelling wave solutions of a nonlinear Schrodinger equation is considered by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple software, The possible explicit parametric representations of the bounded travelling wave solutions are got and all kinds of phase portraits in the parametric space are obtained. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 10 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   Applications of extended tanh method to 'special' types of nonlinear equations [J].
Fan, EG ;
Hon, YC .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (2-3) :351-358
[3]   Exact solitary solutions of an inhomogeneous modified nonlinear Schrodinger equation with competing nonlinearities [J].
Kavitha, L. ;
Akila, N. ;
Prabhu, A. ;
Kuzmanovska-Barandovska, O. ;
Gopi, D. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :1095-1110
[4]   A complex tanh-function method applied to nonlinear equations of Schrodinger type [J].
Khuri, SA .
CHAOS SOLITONS & FRACTALS, 2004, 20 (05) :1037-1040
[5]   Exact traveling wave solutions for the Benjamin-Bona-Mahony equation by improved Fan sub-equation method [J].
Li, Hong ;
Wang, Kanmin ;
Li, Jibin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (14-15) :7644-7652
[6]   Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation [J].
Li, Ji-bin ;
He, Tian-lan .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02) :283-306
[7]  
[Li Jibin 李继彬], 2003, [云南大学学报. 自然科学版, Journal of Yunnan University (Natural Science)], V25, P176
[8]   Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations [J].
Li, Jibin .
CHAOS SOLITONS & FRACTALS, 2007, 34 (03) :867-871
[9]   SINGULARITY STRUCTURE-ANALYSIS AND BILINEAR FORM OF A (2+1) DIMENSIONAL NONLINEAR SCHRODINGER (NLS) EQUATION [J].
RADHA, R ;
LAKSHMANAN, M .
INVERSE PROBLEMS, 1994, 10 (04) :L29-L33
[10]   Explicit and implicit solutions of a generalized Camassa-Holm Kadomtsev-Petviashvili equation [J].
Xie, Shaolong ;
Wang, Lin ;
Zhang, Yuzhong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1130-1141