Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter

被引:47
|
作者
Xu, Wei [1 ]
Xu, Jinli [1 ]
Yan, Xiaofeng [2 ]
机构
[1] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan, Peoples R China
[2] SAIC GM Wuling Automobile Co Ltd, Liuzhou, Peoples R China
关键词
Cubature Kalman filter; Joint estimation; Lithium-ion battery; Parameters identification; Particle filter; State of charge; MODEL-BASED STATE; MANAGEMENT-SYSTEMS; POLYMER BATTERY; SOC ESTIMATION; OBSERVER; PACKS; TEMPERATURE; ALGORITHM;
D O I
10.1007/s43236-019-00023-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate estimation of the state of charge (SOC) of a lithium-ion battery is one of the most crucial issues of battery management system (BMS). Existing methods can achieve accurate estimation of the SOC under stable working conditions. However, they may result in inaccuracy under unstable working conditions such as dynamic cycles and different temperature conditions. This is due to the fact that the dynamic behaviors of battery states have not been considered by the parameter identification methods. In this paper, a SOC and parameter joint estimation method is put forward, where the battery model parameters are identified in real time by a particle filter (PF) with consideration of the battery states. Meanwhile, a cubature Kalman filter (CKF) is used to estimate SOC. Then, experiments under dynamic cycles and different temperature conditions are undertaken to assess the performance of the proposed algorithm when compared with the existing joint estimations. The results show that the proposed joint method can achieve a high accuracy and robustness for SOC estimation.
引用
收藏
页码:292 / 307
页数:16
相关论文
共 50 条
  • [1] Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter
    Wei Xu
    Jinli Xu
    Xiaofeng Yan
    Journal of Power Electronics, 2020, 20 : 292 - 307
  • [2] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Li, Guochun
    Liu, Chang
    Wang, Enlong
    Wang, Limei
    AUTOMOTIVE INNOVATION, 2021, 4 (02) : 189 - 200
  • [3] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Guochun Li
    Chang Liu
    Enlong Wang
    Limei Wang
    Automotive Innovation, 2021, 4 : 189 - 200
  • [4] Lithium-ion battery state of charge estimation with model parameters adaptation using H∞, extended Kalman filter
    Zhao, Linhui
    Liu, Zhiyuan
    Ji, Guohuang
    CONTROL ENGINEERING PRACTICE, 2018, 81 : 114 - 128
  • [5] State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
    Xia, Bizhong
    Wang, Haiqing
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGIES, 2015, 8 (06): : 5916 - 5936
  • [6] Online Parameters Identification and State of Charge Estimation for Lithium-Ion Battery Using Adaptive Cubature Kalman Filter
    Li, Wei
    Luo, Maji
    Tan, Yaqian
    Cui, Xiangyu
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03):
  • [7] A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
    Li, Yanwen
    Wang, Chao
    Gong, Jinfeng
    ENERGY, 2016, 109 : 933 - 946
  • [8] Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter
    Linghu, Jinqing
    Kang, Longyun
    Liu, Ming
    Luo, Xuan
    Feng, Yuanbin
    Lu, Chusheng
    ENERGY, 2019, 189
  • [9] State of Charge Estimation for Battery Based on Improved Cubature Kalman Filter
    Zhang, Da-Yu
    Ma, Jian
    Zhang, Kai
    CICTP 2020: ADVANCED TRANSPORTATION TECHNOLOGIES AND DEVELOPMENT-ENHANCING CONNECTIONS, 2020, : 2303 - 2316
  • [10] An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter
    Zeng, Zhibing
    Tian, Jindong
    Li, Dong
    Tian, Yong
    ENERGIES, 2018, 11 (01):