In this paper, we deal with the inverse problem of determining simple metrics on a compact Riemannian manifold from boundary measurements. We take this information in the dynamical Dirichlet-to-Neumann map associated to the Schrodinger equation. We prove in dimension n > 2 that the knowledge of the Dirichlet-to-Neumann map for the Schrodinger equation uniquely determines the simple metric (up to an admissible set). We also prove a Holder-type stability estimate by the construction of geometrical optics solutions of the Schrodinger equation and the direct use of the invertibility of the geodesical X-ray transform.
机构:
Colorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA
Imanuvilov, Oleg
Yamamoto, Masahiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro, Tokyo 1538914, Japan
Acad Romanian Scientists, Ilfov 3, Bucharest, Romania
Acad Peloritana Pericolanti, Messina, ItalyColorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA
Yamamoto, Masahiro
COMMUNICATIONS ON ANALYSIS AND COMPUTATION,
2024,
2
(04):
: 316
-
342