RECOVERY OF TRANSVERSAL METRIC TENSOR IN THE SCHRO spacing diaeresis DINGER EQUATION FROM THE DIRICHLET-TO-NEUMANN MAP

被引:0
|
作者
Bellassoued, Mourad [1 ]
Rezig, Zouhour [2 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
[2] Univ Tunis El Manar, Fac Sci Tunis, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2022年 / 15卷 / 05期
关键词
  Inverse problem; Riemannian manifold; stability estimate; Dirichlet-to-Neumann map; geodesical ray transform; BOUNDARY-VALUE PROBLEM; STABILITY ESTIMATE; INVERSE PROBLEM; WAVE-EQUATION; RECONSTRUCTION; RIGIDITY;
D O I
10.3934/dcdss.2021158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the inverse problem of determining simple metrics on a compact Riemannian manifold from boundary measurements. We take this information in the dynamical Dirichlet-to-Neumann map associated to the Schrodinger equation. We prove in dimension n > 2 that the knowledge of the Dirichlet-to-Neumann map for the Schrodinger equation uniquely determines the simple metric (up to an admissible set). We also prove a Holder-type stability estimate by the construction of geometrical optics solutions of the Schrodinger equation and the direct use of the invertibility of the geodesical X-ray transform.
引用
收藏
页码:1061 / 1084
页数:24
相关论文
共 29 条