On regularity properties of a surface growth model

被引:5
作者
Burczak, Jan [1 ,2 ]
Ozanski, Wojciech S. [3 ]
Seregin, Gregory [4 ,5 ]
机构
[1] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
[3] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[4] Univ Oxford, Oxford, England
[5] RAS, Steklov Math Inst, St Petersburg Dept, St Petersburg, Russia
基金
欧洲研究理事会;
关键词
Surface growth model; partial regularity; local higher integrability; singular set; box-counting dimension; Hausdorff dimension; THIN-FILM-GROWTH; WEAK SOLUTIONS;
D O I
10.1017/prm.2020.84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show local higher integrability of derivative of a suitable weak solution to the surface growth model, provided a scale-invariant quantity is locally bounded. If additionally our scale-invariant quantity is small, we prove local smoothness of solutions.
引用
收藏
页码:1869 / 1892
页数:24
相关论文
共 26 条
[1]  
[Anonymous], 2014, Lecture notes on regularity theory for the Navier-Stokes equations
[2]   Local existence and uniqueness in the largest critical space for a surface growth model [J].
Bloemker, Dirk ;
Romito, Marco .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (03) :365-381
[3]  
Blömker D, 2009, DYNAM PART DIFFER EQ, V6, P227
[4]   MARKOVIANITY AND ERGODICITY FOR A SURFACE GROWTH PDE [J].
Bloemker, Dirk ;
Flandoli, Franco ;
Romito, Marco .
ANNALS OF PROBABILITY, 2009, 37 (01) :275-313
[5]   Thin-film-growth-models:: On local solutions [J].
Blömker, D ;
Gugg, C .
RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, :66-+
[6]   Stationary solutions for a model of amorphous thin-film growth [J].
Blömker, D ;
Hairer, M .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (04) :903-922
[7]   Thin-film-growth models:: roughness and correlation functions [J].
Blömker, D ;
Gugg, C ;
Raible, M .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :385-402
[8]  
Blomker D., 2015, Jahresber. Dtsch. Math.-Ver., V117, P233
[9]  
Campanato S., 1963, Ann. Scuola Norm. Sup. Pisa (3), V17, P175
[10]  
Gabushin V.N., 1967, Matematicheskie Zametki, V1, P291