共 83 条
A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol
被引:116
作者:
Li, Song
[1
]
Tang, Jingchun
[1
,2
,3
]
Liu, Qinglong
[1
,3
]
Liu, Xiaomei
[1
,2
]
Gao, Bin
[4
]
机构:
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300350, Peoples R China
[2] Minist Educ, Key Lab Pollut Processes & Environm Criteria, Tianjin 300350, Peoples R China
[3] Tianjin Engn Ctr Environm Diag & Contaminat Remed, Tianjin 300350, Peoples R China
[4] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
基金:
国家重点研发计划;
中国国家自然科学基金;
关键词:
Carbon-coated Fe-0;
Stabilization;
4-Chlorophenol;
Persulfate;
Catalytic oxidation;
ZERO-VALENT IRON;
OXIDATIVE-DEGRADATION;
WASTE-WATER;
AQUEOUS-SOLUTION;
PEROXYMONOSULFATE ACTIVATION;
CR(VI) REMOVAL;
ADSORPTION;
REDUCTION;
DECHLORINATION;
GENERATION;
D O I:
10.1016/j.envint.2020.105639
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Nano zero-valent iron (nZVI) and its composite materials have been extensively studied in the field of environmental remediation. However, the oxidation and agglomeration of nZVI limits the large-scale application of nZVI in environmental remediation. This study developed a two-step method to prepare stable carbon-coated nZVI (Fe-0@C) which combined hydrothermal carbonization and carbothermal reduction methods and used glucose and iron oxide (Fe3O4) as precursors. When the carbothermal reduction temperature was 700 degrees C and the elemental molar ratio of carbon to iron was 22:1, stable Fe-0@C can be generated. The nZVI particles are encapsulated by mesoporous carbon and embedded in the carbon spheres. The unique structure of carbon coating not only inhibits the agglomeration of nZVI, but also makes nZVI stable in air for more than 120 days. Not only that, the as-synthesized Fe-0@C exhibited high catalytic activity toward the degradation of 4-chlorophenol (4-CP) by activating persulfate. Different from conventional nZVI catalysts in generation of sulfate radicals, Fe-0@C selectively induced hydroxyl radicals for 4-CP degradation. Moreover, Fe-0@C has been shown to efficiently degrade 4-CP by using the dissolved oxygen in water to form hydroxyl radicals. This study not only provides a simple, green method for the preparation of stabilized nZVI, but also provides the possibility of large-scale application of nZVI in the field of environmental remediation.
引用
收藏
页数:11
相关论文