Stationary Wong-Zakai Approximation of Fractional Brownian Motion and Stochastic Differential Equations with Noise Perturbations

被引:1
作者
Viitasaari, Lauri [1 ]
Zeng, Caibin [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] South China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Brownian motion; stochastic differential equation; Wong-Zakai approximation; DRIVEN; CONVERGENCE; INTEGRALS; CONTINUITY; BEHAVIOR;
D O I
10.3390/fractalfract6060303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a Wong-Zakai type stationary approximation to the fractional Brownian motions and provide a sharp rate of convergence in L-p (Omega). Our stationary approximation is suitable for all values of H is an element of (0, 1). As an application, we consider stochastic differential equations driven by a fractional Brownian motion with H > 1 / 2. We provide sharp rate of convergence in a certain fractional-type Sobolev space of the approximation, which in turn provides rate of convergence for the solution of the approximated equation. This generalises some existing results in the literature concerning approximation of the noise and the convergence of corresponding solutions.
引用
收藏
页数:23
相关论文
共 39 条
[1]  
Adler RobertJ., 2007, RANDOM FIELDS GEOMET, V80
[2]  
[Anonymous], 2010, MULTIDIMENSIONAL STO
[3]   Necessary and sufficient conditions for Holder continuity of Gaussian processes [J].
Azmoodeh, Ehsan ;
Sottinen, Tommi ;
Viitasaari, Lauri ;
Yazigi, Adil .
STATISTICS & PROBABILITY LETTERS, 2014, 94 :230-235
[4]   FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO [J].
Bayer, Christian ;
Friz, Peter K. ;
Riedel, Sebastian ;
Schoenmakers, John .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1449-1483
[5]  
Biagini F., 2008, STOCHASTIC CALCULUS, P9
[6]   APPROXIMATING STOCHASTIC EVOLUTION EQUATIONS WITH ADDITIVE WHITE AND ROUGH NOISES [J].
Cao, Yanzhao ;
Hong, Jialin ;
Liu, Zhihui .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1958-1981
[7]   Stochastic differential equations for fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01) :75-80
[8]   Convergence rates for the full Gaussian rough paths [J].
Friz, Peter ;
Riedel, Sebastian .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01) :154-194
[9]   Ergodicity of the Infinite Dimensional Fractional Brownian Motion [J].
Garrido-Atienza, Maria J. ;
Schmalfuss, Bjoern .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (03) :671-681
[10]   REAL VARIABLE LEMMA AND CONTINUITY OF PATHS OF SOME GAUSSIAN PROCESSES [J].
GARSIA, AM ;
RODEMICH, E ;
RUMSEY, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (06) :565-&