Rotating machinery fault diagnosis by deep adversarial transfer learning based on subdomain adaptation

被引:11
|
作者
Shao, Jiajie [1 ]
Huang, Zhiwen [1 ]
Zhu, Yidan [2 ]
Zhu, Jianmin [1 ]
Fang, Dianjun [3 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Mech Engn, 516 Jungong Rd, Shanghai 200093, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian, Peoples R China
[3] Tongji Univ, Sch Mech Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Subdomain adaptation; adversarial training; deep learning; transfer learning; fault diagnosis;
D O I
10.1177/16878140211040226
中图分类号
O414.1 [热力学];
学科分类号
摘要
Rotating machinery fault diagnosis is very important for industrial production. Many intelligent fault diagnosis technologies are successfully applied and achieved good results. Due to the fact that machine damages usually happen under different working conditions, and manual scale labeled data are too expensive, domain adaptation has been developed for fault diagnosis. However, the current methods mostly focus on global domain adaptation, the application of subdomain adaptation for fault diagnosis is still limited. A deep transfer learning method is proposed for rotating machinery fault diagnosis in this study, where subdomain adaptation and adversarial learning are introduced to align local feature distribution and global feature distribution separately. Experiments are performed on two rotating machinery datasets to verify the effectiveness of this method. The results reveal that this method has outstanding mutual migration ability and can improve the diagnostic performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery
    Jia, Sixiang
    Wang, Jinrui
    Zhang, Xiao
    Han, Baokun
    ENTROPY, 2021, 23 (04)
  • [2] Gear Fault Diagnosis Based on Deep Learning and Subdomain Adaptation
    Jie Z.
    Wang X.
    Gong T.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (22): : 2716 - 2723
  • [3] Deep Contrastive Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [4] Deep Adversarial Subdomain Adaptation Network for Intelligent Fault Diagnosis
    Liu, Yanxu
    Wang, Yu
    Chow, Tommy W. S.
    Li, Baotong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6038 - 6046
  • [5] Unsupervised domain adaptation transfer learning for the fault diagnosis in rotating machinery
    Zhou, Xiangqi
    Fu, Zhongguang
    Gao, Yucai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 106 - 113
  • [6] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [7] Deep Ensemble-Based Classifier for Transfer Learning in Rotating Machinery Fault Diagnosis
    Pacheco, Fannia
    Drimus, Alin
    Duggen, Lars
    Cerrada, Mariela
    Cabrera, Diego
    Sanchez, Rene-Vinicio
    IEEE ACCESS, 2022, 10 : 29778 - 29787
  • [8] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    SHOCK AND VIBRATION, 2021, 2021
  • [9] A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning
    Yang, Daoguang
    Karimi, Hamid Reza
    Pawelczyk, Marek
    CONTROL ENGINEERING PRACTICE, 2023, 134
  • [10] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975