A note on Euler number of locally conformally Kahler manifolds

被引:4
|
作者
Huang, Teng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Peoples R China
关键词
LCK manifold; Euler number; PARABOLICITY;
D O I
10.1007/s00209-020-02491-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-2n be a compact Riemannian manifold of non-positive (resp. negative) sectional curvature. We call (M, J, theta) a d(bounded) locally conformally Kahler manifold if the lifted Lee form theta. on the universal covering space of M is d(bounded). We show that if M-2n is homeomorphic to a d(bounded) LCK manifold, then its Euler number satisfies the inequality (-1)(n) chi (M-2n) >= (resp. >) 0.
引用
收藏
页码:1725 / 1733
页数:9
相关论文
共 50 条