Mathematical model for a shock problem involving a linear viscoelastic bar

被引:28
|
作者
Bergounioux, M
Long, NT
Dinh, APN
机构
[1] Univ Orleans, MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ HochiMinh City, Coll Nat Sci, Dept Math & Comp Sci, Hochi Minh City, Vietnam
关键词
shock; integral equation; full non-homogeneous condition; energy-type estimates; compactness;
D O I
10.1016/S0362-546X(99)00218-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following problem, finding a pair (u,P) of functions satisfying utt-uxx+F(u,ut) = f(x,t), 0<x<1, 0<t<T; ux(0,t) = P(t); ux(1,t)+K1u(1,t)+λ1ut(1,t) = 0; u(x,0) = u0(x), ut(x,0) = u1(x), and F(u,ut) = Ku+λut, is considered, where K,λ,K1,λ1 are given nonnegative constants and u0, u1, f are given functions satisfying conditions specified later, and the unknown function u(x,t) and the unknown boundary value P(t) satisfy the following Cauchy problem for ordinary differential equation P″(t)+ω+2$/P(t) = hutt(0,t), 0<t<T; P(0) = P0, P′(0) = P1, where ω>0, h≥0, P0, P1 are given constants. The theorem of global existence and uniqueness of a weak solution to the problems was proved, based on a Galerkin decomposition method.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [1] On a shock problem involving a linear viscoelastic bar
    Long, NT
    Van Ut, L
    Truc, NTT
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (02) : 198 - 224
  • [2] Mathematical model for a shock problem involving a linear viscoelastic bar (vol 43, pg 547, 2001)
    Bergounioux, M
    Long, NT
    Dinh, APN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (05) : 703 - 703
  • [3] On a shock problem involving a nonlinear viscoelastic bar
    Nguyen Thanh Long
    Alain Pham Ngoc Dinh
    Tran Ngoc Diem
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 337 - 358
  • [4] On a shock problem involving a nonlinear viscoelastic bar
    Nguyen Thanh Long
    Alain Pham Ngoc Dinh
    Tran Ngoc Diem
    Boundary Value Problems, 2005
  • [5] A SHOCK PROBLEM INVOLVING A NONLINEAR VISCOELASTIC BAR ASSOCIATED WITH A NONLINEAR BOUNDARY CONDITION
    Nguyen Thanh Long
    Vo Giang Giai
    Le Xuan Truong
    DEMONSTRATIO MATHEMATICA, 2008, 41 (01) : 85 - 108
  • [6] On the mathematical model of a viscoelastic bar
    Takaci, Arpad
    Takaci, Djurdjica
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (14) : 1685 - 1695
  • [7] On the approximate solution of a mathematical model of a viscoelastic bar
    Takaici, Djurdjica
    Takaci, Arpad
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) : 1560 - 1569
  • [8] Unified mathematical model for linear viscoelastic predictions of linear and branched polymers
    Schieber, Jay D.
    Khaliullin, Renat N.
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 339 - 341
  • [9] Mathematical model of the impact response of a linear viscoelastic auxetic plate
    Ajeneza, O.
    Rossikhin, Yu A.
    Shitikova, M. V.
    INTERNATIONAL CONFERENCE OF YOUNG SCIENTISTS AND STUDENTS: TOPICAL PROBLEMS OF MECHANICAL ENGINEERING 2018, 2019, 489
  • [10] Mathematical analysis on linear viscoelastic identification
    Cho, Kwang Soo
    Kwon, Mi Kyung
    Lee, Junghaeng
    Kim, Sihyun
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2017, 29 (04) : 249 - 268