Mathematical model for a shock problem involving a linear viscoelastic bar

被引:28
作者
Bergounioux, M
Long, NT
Dinh, APN
机构
[1] Univ Orleans, MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ HochiMinh City, Coll Nat Sci, Dept Math & Comp Sci, Hochi Minh City, Vietnam
关键词
shock; integral equation; full non-homogeneous condition; energy-type estimates; compactness;
D O I
10.1016/S0362-546X(99)00218-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following problem, finding a pair (u,P) of functions satisfying utt-uxx+F(u,ut) = f(x,t), 0<x<1, 0<t<T; ux(0,t) = P(t); ux(1,t)+K1u(1,t)+λ1ut(1,t) = 0; u(x,0) = u0(x), ut(x,0) = u1(x), and F(u,ut) = Ku+λut, is considered, where K,λ,K1,λ1 are given nonnegative constants and u0, u1, f are given functions satisfying conditions specified later, and the unknown function u(x,t) and the unknown boundary value P(t) satisfy the following Cauchy problem for ordinary differential equation P″(t)+ω+2$/P(t) = hutt(0,t), 0<t<T; P(0) = P0, P′(0) = P1, where ω>0, h≥0, P0, P1 are given constants. The theorem of global existence and uniqueness of a weak solution to the problems was proved, based on a Galerkin decomposition method.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 4 条
[1]  
AN NT, 1991, J MECH NCSR VIETNAM, V13, P1
[2]  
Lions J. L., 1969, QUELQUES METHODES RE
[3]   ON THE QUASI-LINEAR WAVE-EQUATION - UTT-DELTA-U+F(U,U(T))=0 ASSOCIATED WITH A MIXED NONHOMOGENEOUS CONDITION [J].
LONG, NT ;
DINH, APN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (07) :613-623
[4]  
LONG NT, 1995, NONLINEAR ANAL-THEOR, V24, P1261