A Study on the Combined Treatment of Cryorolling, Short-Annealing, and Aging for the Development of Ultrafine-Grained Al 6063 Alloy with Enhanced Strength and Ductility

被引:58
作者
Panigrahi, Sushanta Kumar [1 ]
Jayaganthan, R. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Met & Mat Engn, Roorkee 247667, Uttar Pradesh, India
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2010年 / 41A卷 / 10期
关键词
MECHANICAL-PROPERTIES; TENSILE PROPERTIES; NANOCRYSTALLINE; MICROSTRUCTURE; INSTABILITIES; OPTIMIZATION; DEFORMATION; REFINEMENT; BEHAVIOR; METALS;
D O I
10.1007/s11661-010-0328-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-strength ultrafine-grained (UFG) metals and alloys often show a reduced tensile ductility when compared with their coarse-grained counterparts. The earlier attempts in trying to improve their ductility usually have led to sacrificing its strength. Optimized process conditions are proposed to achieve both high strength and high ductility in the Al 6063 alloy in the current work. It involves solution treatment of the Al 6063 alloy to dissolve the second-phase particles, cryorolling (CR) to produce a high density of dislocations, short annealing (SA) treatment to recrystallize partially the microstructure without affecting the age-hardening effect, and finally aging treatment to generate highly dispersed nano precipitates. The solution treatment prior to CR combined with post-CR SA at 428 K (155 A degrees C) for 5 minutes followed by aging treatment at 398 K (125 A degrees C) for 12 hours are the optimum processing conditions to obtain the UFG microstructure with improved tensile strength (286 MPa) and good tensile ductility (14 pct) in the Al 6063 alloy. It is observed that the accumulation of dislocations and the formation of nanosized precipitates are responsible for improving the strength, whereas both a low dislocation density and a high density of nanosized precipitates contribute to the improvement in ductility of the CR Al 6063 alloy subjected to an optimized treatment of short annealing and aging.
引用
收藏
页码:2675 / 2690
页数:16
相关论文
共 34 条
[1]   Plastic deformation with reversible peak broadening in nanocrystalline nickel [J].
Budrovic, Z ;
Van Swygenhoven, H ;
Derlet, PM ;
Van Petegem, S ;
Schmitt, B .
SCIENCE, 2004, 304 (5668) :273-276
[2]   Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J].
Cheng, S. ;
Zhao, Y. H. ;
Zhu, Y. T. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (17) :5822-5832
[3]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[4]  
Cubberly WH, 1979, ASM HDB, P117
[5]   The precipitation sequence in Al-Mg-Si alloys [J].
Edwards, GA ;
Stiller, K ;
Dunlop, GL ;
Couper, MJ .
ACTA MATERIALIA, 1998, 46 (11) :3893-3904
[6]   On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111 [J].
S. Esmaeili ;
X. Wang ;
D. J. Lloyd ;
W. J. Poole .
Metallurgical and Materials Transactions A, 2003, 34 (3) :751-763
[7]   Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding [J].
Höppel, HW ;
May, J ;
Göken, M .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (09) :781-784
[8]   Achieving high strength and high ductility in precipitation-hardened alloys [J].
Horita, Z ;
Ohashi, K ;
Fujita, T ;
Kaneko, K ;
Langdon, TG .
ADVANCED MATERIALS, 2005, 17 (13) :1599-+
[9]   The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties [J].
Horita, Z ;
Fujinami, T ;
Langdon, TG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 318 (1-2) :34-41
[10]   Deformation behavior and plastic instabilities of ultrafine-grained titanium [J].
Jia, D ;
Wang, YM ;
Ramesh, KT ;
Ma, E ;
Zhu, YT ;
Valiev, RZ .
APPLIED PHYSICS LETTERS, 2001, 79 (05) :611-613