Johnson's bijections and their application to counting simultaneous core partitions

被引:6
作者
Baek, Jineon [1 ]
Nam, Hayan [2 ]
Yu, Myungjun [1 ]
机构
[1] Univ Michigan, Dept Math, 2074 East Hall,530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Dept Math, 340 Rowland Hall, Irvine, CA 92697 USA
关键词
DISTINCT PARTS; THEOREM; (S;
D O I
10.1016/j.ejc.2018.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Johnson recently proved Armstrong's conjecture which states that the average size of an (a, b)-core partition is (a + b + 1)(a - 1)(b - 1)/24. He used various coordinate changes and one-to-one correspondences that are useful for counting problems about simultaneous core partitions. We give an expression for the number of (b(1), b(2), ... , b(n))-core partitions where {b(1), b(2), ... , b(n)} contains at least one pair of relatively prime numbers. We also evaluate the largest size of a self-conjugate (s, s + 1, s + 2)-core partition. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 18 条
[1]  
Aggarwal A., 2015, Electron. J. Combin, V22, P10
[2]   Armstrong's conjecture for (k, mk+1)-core partitions [J].
Aggarwal, Amol .
EUROPEAN JOURNAL OF COMBINATORICS, 2015, 47 :54-67
[3]  
Amdeberhan T., 2012, ARXIV12074045
[4]   Partitions which are simultaneously t1- and t2-core [J].
Anderson, J .
DISCRETE MATHEMATICS, 2002, 248 (1-3) :237-243
[5]   Results and conjectures on simultaneous core partitions [J].
Armstrong, Drew ;
Hanusa, Christopher R. H. ;
Jones, Brant C. .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 :205-220
[6]   On simultaneous s-cores/t-cores [J].
Aukerman, David ;
Kane, Ben ;
Sze, Lawrence .
DISCRETE MATHEMATICS, 2009, 309 (09) :2712-2720
[7]  
Berg C., 2008, DISCRETE MATH THEOR, P235
[8]  
Johnson P., 2015, ARXIV150207934
[9]  
Nath R., 2016, Integers, V16, P23
[10]   A theorem on the cores of partitions [J].
Olsson, Jorn B. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) :733-740