External magnetic effect for the security of practical quantum key distribution

被引:14
作者
Tan, Hao [1 ,2 ]
Zhang, Wei-Yang [1 ,2 ]
Zhang, Likang [1 ,2 ]
Li, Wei [1 ,2 ]
Liao, Sheng-Kai [1 ,2 ]
Xu, Feihu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Sch Phys Sci, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Shanghai Branch, CAS Ctr Excellence & Synerget Innovat, Ctr Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum cryptography; quantum key distribution; quantum security; quantum communication; ATTACK;
D O I
10.1088/2058-9565/ac7d07
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) allows remote parties to share secret keys with proven security. To guarantee the security of practical QKD, the imperfections in realistic devices need to be characterized and considered in practical security analysis. Particularly, a standard QKD system normally uses optical isolator or optical circulator in the transmitter to prevent the injection from external light. Here we find that the optical isolators and circulators, commonly based on the Faraday effect, are subject to the perturbation from external magnetic fields. With this, we provide a comprehensive analysis of the security for practical QKD due to external magnetic effect. We experimentally demonstrate the influence of magnetic fields on both the transmittance and the isolation of standard optical isolators and circulators. We analyze the security risks caused by the potential magnetic attacks, together with the corresponding countermeasures.
引用
收藏
页数:13
相关论文
共 34 条
[1]  
Bennett P., 1984, P IEEE INT C COMP SY, P175
[2]   Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: Comparison of experiment and theory [J].
Dani, Raj Kumar ;
Wang, Hongwang ;
Bossmann, Stefan H. ;
Wysin, Gary ;
Chikan, Viktor .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (22)
[3]   Ultra-sensitive gain diagnostic for chemical lasers [J].
Davis, SJ ;
Holtzclaw, KW ;
Kessler, WJ ;
Otis, CE .
GAS AND CHEMICAL LASERS, 1996, 2702 :202-207
[4]   Practical challenges in quantum key distribution [J].
Diamanti, Eleni ;
Lo, Hoi-Kwong ;
Qi, Bing ;
Yuan, Zhiliang .
NPJ QUANTUM INFORMATION, 2016, 2
[5]   Design and characterization of a compact magnetic shield for ultracold atomic gas experiments [J].
Farolfi, A. ;
Trypogeorgos, D. ;
Colzi, G. ;
Fava, E. ;
Lamporesi, G. ;
Ferrari, G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (11)
[6]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[7]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)
[8]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325
[9]   Laser-seeding Attack in Quantum Key Distribution [J].
Huang, Anqi ;
Navarrete, Alvaro ;
Sun, Shi-Hai ;
Chaiwongkhot, Poompong ;
Curty, Marcos ;
Makarov, Vadim .
PHYSICAL REVIEW APPLIED, 2019, 12 (06)
[10]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014