Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

被引:12
作者
Fleury, Delphine [1 ]
Luo, Ming-Cheng [2 ]
Dvorak, Jan [2 ]
Ramsay, Luke [3 ]
Gill, Bikram S. [4 ]
Anderson, Olin D. [5 ]
You, Frank M. [2 ]
Shoaei, Zahra [1 ]
Deal, Karin R. [2 ]
Langridge, Peter [1 ]
机构
[1] Univ Adelaide, Australian Ctr Plant Funct Genom, Glen Osmond, SA 5064, Australia
[2] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[3] Scottish Crop Res Inst, Genet Programme, Dundee DD2 5DA, Scotland
[4] Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA
[5] USDA ARS, Genom & Gene Discovery Unit, Western Reg Res Ctr, Albany, CA 94710 USA
来源
BMC GENOMICS | 2010年 / 11卷
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
QUANTITATIVE TRAIT LOCI; TRITICUM-AESTIVUM L; GENETIC-MAP; SEQUENCE; RICE; RECOMBINATION; MARKERS; RESISTANCE; EVOLUTION; QTL;
D O I
10.1186/1471-2164-11-382
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results: We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions: The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.
引用
收藏
页数:10
相关论文
共 52 条
  • [21] Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species
    Luo, Ming-Cheng
    Ma, Yaqin
    You, Frank M.
    Anderson, Olin D.
    Kopecky, David
    Simkova, Hana
    Safar, Jan
    Dolezel, Jaroslav
    Gill, Bikram
    McGuire, Patrick E.
    Dvorak, Jan
    [J]. BMC GENOMICS, 2010, 11
  • [22] The map-based sequence of the rice genome
    Matsumoto, T
    Wu, JZ
    Kanamori, H
    Katayose, Y
    Fujisawa, M
    Namiki, N
    Mizuno, H
    Yamamoto, K
    Antonio, BA
    Baba, T
    Sakata, K
    Nagamura, Y
    Aoki, H
    Arikawa, K
    Arita, K
    Bito, T
    Chiden, Y
    Fujitsuka, N
    Fukunaka, R
    Hamada, M
    Harada, C
    Hayashi, A
    Hijishita, S
    Honda, M
    Hosokawa, S
    Ichikawa, Y
    Idonuma, A
    Iijima, M
    Ikeda, M
    Ikeno, M
    Ito, K
    Ito, S
    Ito, T
    Ito, Y
    Ito, Y
    Iwabuchi, A
    Kamiya, K
    Karasawa, W
    Kurita, K
    Katagiri, S
    Kikuta, A
    Kobayashi, H
    Kobayashi, N
    Machita, K
    Maehara, T
    Masukawa, M
    Mizubayashi, T
    Mukai, Y
    Nagasaki, H
    Nagata, Y
    [J]. NATURE, 2005, 436 (7052) : 793 - 800
  • [23] Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x 'AC Domain'
    McCartney, CA
    Somers, DJ
    Humphreys, DG
    Lukow, O
    Ames, N
    Noll, J
    Cloutier, S
    McCallum, BD
    [J]. GENOME, 2005, 48 (05) : 870 - 883
  • [24] Meiotic recombination hotspots in plants
    Mezard, C.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 : 531 - 534
  • [25] TriMEDB: A database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae
    Mochida, Keiichi
    Saisho, Daisuke
    Yoshida, Takuhiro
    Sakurai, Tetsuya
    Shinozaki, Kazuo
    [J]. BMC PLANT BIOLOGY, 2008, 8 (1)
  • [26] Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1
    Munkvold, JD
    Greene, RA
    Bertmudez-Kandianis, CE
    La Rota, CM
    Edwards, H
    Sorrells, SF
    Dake, T
    Benscher, D
    Kantety, R
    Linkiewicz, AM
    Dubcovsky, J
    Akhunov, ED
    Dvorák, J
    Mifahudin
    Gustafson, JP
    Pathan, MS
    Nguyen, HT
    Matthews, DE
    Chao, S
    Lazo, GR
    Hummel, DD
    Anderson, OD
    Anderson, JA
    Gonzalez-Hernandez, JL
    Peng, JH
    Lapitan, N
    Qi, LL
    Echalier, B
    Gill, BS
    Hossain, KG
    Kalavacharla, V
    Kianian, SF
    Sandhu, D
    Erayman, M
    Gill, KS
    McGuire, PE
    Qualset, CO
    Sorrells, ME
    [J]. GENETICS, 2004, 168 (02) : 639 - 650
  • [27] Nesbitt M, 1996, HULLED WHEATS, P41
  • [28] RFLP mapping of manganese efficiency in barley
    Pallotta, MA
    Graham, RD
    Langridge, P
    Sparrow, DHB
    Barker, SJ
    [J]. THEORETICAL AND APPLIED GENETICS, 2000, 101 (07) : 1100 - 1108
  • [29] Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics
    Paterson, AH
    Bowers, JE
    Chapman, BA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) : 9903 - 9908
  • [30] The Sorghum bicolor genome and the diversification of grasses
    Paterson, Andrew H.
    Bowers, John E.
    Bruggmann, Remy
    Dubchak, Inna
    Grimwood, Jane
    Gundlach, Heidrun
    Haberer, Georg
    Hellsten, Uffe
    Mitros, Therese
    Poliakov, Alexander
    Schmutz, Jeremy
    Spannagl, Manuel
    Tang, Haibao
    Wang, Xiyin
    Wicker, Thomas
    Bharti, Arvind K.
    Chapman, Jarrod
    Feltus, F. Alex
    Gowik, Udo
    Grigoriev, Igor V.
    Lyons, Eric
    Maher, Christopher A.
    Martis, Mihaela
    Narechania, Apurva
    Otillar, Robert P.
    Penning, Bryan W.
    Salamov, Asaf A.
    Wang, Yu
    Zhang, Lifang
    Carpita, Nicholas C.
    Freeling, Michael
    Gingle, Alan R.
    Hash, C. Thomas
    Keller, Beat
    Klein, Patricia
    Kresovich, Stephen
    McCann, Maureen C.
    Ming, Ray
    Peterson, Daniel G.
    Mehboob-ur-Rahman
    Ware, Doreen
    Westhoff, Peter
    Mayer, Klaus F. X.
    Messing, Joachim
    Rokhsar, Daniel S.
    [J]. NATURE, 2009, 457 (7229) : 551 - 556