Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

被引:12
作者
Fleury, Delphine [1 ]
Luo, Ming-Cheng [2 ]
Dvorak, Jan [2 ]
Ramsay, Luke [3 ]
Gill, Bikram S. [4 ]
Anderson, Olin D. [5 ]
You, Frank M. [2 ]
Shoaei, Zahra [1 ]
Deal, Karin R. [2 ]
Langridge, Peter [1 ]
机构
[1] Univ Adelaide, Australian Ctr Plant Funct Genom, Glen Osmond, SA 5064, Australia
[2] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[3] Scottish Crop Res Inst, Genet Programme, Dundee DD2 5DA, Scotland
[4] Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA
[5] USDA ARS, Genom & Gene Discovery Unit, Western Reg Res Ctr, Albany, CA 94710 USA
来源
BMC GENOMICS | 2010年 / 11卷
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
QUANTITATIVE TRAIT LOCI; TRITICUM-AESTIVUM L; GENETIC-MAP; SEQUENCE; RICE; RECOMBINATION; MARKERS; RESISTANCE; EVOLUTION; QTL;
D O I
10.1186/1471-2164-11-382
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results: We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions: The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.
引用
收藏
页数:10
相关论文
共 52 条
  • [1] The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms.
    Akhunov, ED
    Goodyear, AW
    Geng, S
    Qi, LL
    Echalier, B
    Gill, BS
    Miftahudin
    Gustafson, JP
    Lazo, G
    Chao, SM
    Anderson, OD
    Linkiewicz, AM
    Dubcovsky, J
    La Rota, M
    Sorrells, ME
    Zhang, DS
    Nguyen, HT
    Kalavacharla, V
    Hossain, K
    Kianian, SF
    Peng, JH
    Lapitan, NLV
    Gonzalez-Hernandeiz, JL
    Anderson, JA
    Choi, DW
    Close, TJ
    Dilbirligi, M
    Gill, KS
    Walker-Simmons, MK
    Steber, C
    McGuire, PE
    Qualset, CO
    Dvorak, J
    [J]. GENOME RESEARCH, 2003, 13 (05) : 753 - 763
  • [2] Comparison of orthologous loci from small grass genomes Brachypodium and rice:: implications for wheat genomics and grass genome annotation
    Bossolini, Eligio
    Wicker, Thomas
    Knobel, Philip A.
    Keller, Beat
    [J]. PLANT JOURNAL, 2007, 49 (04) : 704 - 717
  • [3] Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor
    Caldwell, KS
    Dvorak, J
    Lagudah, ES
    Akhunov, E
    Luo, MC
    Wolters, P
    Powell, W
    [J]. GENETICS, 2004, 167 (02) : 941 - 947
  • [4] Acc homoeoloci and the evolution of wheat genomes
    Chalupska, D.
    Lee, H. Y.
    Faris, J. D.
    Evrard, A.
    Chalhoub, B.
    Haselkorn, R.
    Gornicki, P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (28) : 9691 - 9696
  • [5] Simple sequence repeat markers associated with three quantitative trait loci for black point resistance can be used to enrich selection populations in bread wheat
    Christopher, M. J.
    Williamson, P. M.
    Michalowitz, M.
    Jennings, R.
    Lehmensiek, A.
    Sheppard, J.
    Banks, P.
    [J]. AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2007, 58 (09): : 867 - 873
  • [6] Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits
    Chu, C. -G.
    Xu, S. S.
    Friesen, T. L.
    Faris, J. D.
    [J]. MOLECULAR BREEDING, 2008, 22 (02) : 251 - 266
  • [7] Development and implementation of high-throughput SNP genotyping in barley
    Close, Timothy J.
    Bhat, Prasanna R.
    Lonardi, Stefano
    Wu, Yonghui
    Rostoks, Nils
    Ramsay, Luke
    Druka, Arnis
    Stein, Nils
    Svensson, Jan T.
    Wanamaker, Steve
    Bozdag, Serdar
    Roose, Mikeal L.
    Moscou, Matthew J.
    Chao, Shiaoman
    Varshney, Rajeev K.
    Szuecs, Peter
    Sato, Kazuhiro
    Hayes, Patrick M.
    Matthews, David E.
    Kleinhofs, Andris
    Muehlbauer, Gary J.
    DeYoung, Joseph
    Marshall, David F.
    Madishetty, Kavitha
    Fenton, Raymond D.
    Condamine, Pascal
    Graner, Andreas
    Waugh, Robbie
    [J]. BMC GENOMICS, 2009, 10
  • [8] Analysis of recombination and gene distribution in the 2L1.0 region of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.)
    Dilbirligi, M
    Erayman, M
    Gill, KS
    [J]. GENOMICS, 2005, 86 (01) : 47 - 54
  • [9] Chromosome-based genomics in the cereals
    Dolezel, Jaroslav
    Kubalakova, Marie
    Paux, Etienne
    Bartos, Jan
    Feuillet, Catherine
    [J]. CHROMOSOME RESEARCH, 2007, 15 (01) : 51 - 66
  • [10] Dubcovsky J, 1996, GENETICS, V143, P983