Historical and Future Projected Warming of Antarctic Shelf Bottom Water in CMIP6 Models

被引:51
作者
Purich, Ariaan [1 ,2 ]
England, Matthew H. [1 ,2 ]
机构
[1] ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
[2] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Antarctic shelf bottom water; climate change; CMIP6; Southern Annular Mode; Southern Ocean; SOUTHERN-OCEAN CONVECTION; SEA-ICE; CONTINENTAL-SHELF; FRESH-WATER; VARIABILITY; TRANSPORT; RETREAT; DRIVEN; FRONT; EDDY;
D O I
10.1029/2021GL092752
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding warming on the Antarctic shelf is critical for projecting changes in Antarctic ice shelves and ice sheets. Here we assess Antarctic Shelf Bottom Water (ASBW) temperature mean-state and trends in CMIP6 models. While CMIP6 models do not resolve ice shelves, future shelf water warming will impact ice shelf vulnerability. The CMIP6 multi-model mean zonal temperature structure and mean-state ASBW spatial pattern resemble observations, although there is considerable spread across the models and a multi-model mean warm bias. The multi-model mean projects an average ASBW warming of 0.36 degrees C (interdecile range 0.07 degrees C-0.60 degrees C) under SSP245 and 0.62 degrees C (interdecile range 0.16 degrees C-0.95 degrees C) under SSP585 by 2100, emphasizing the influence future emissions have on shelf water warming around Antarctica. Changes in the transport of Circumpolar Deep Water onto the shelf associated with changes in the Southern Annular Mode, as well as Circumpolar Deep Water warming, are predicted to conspire to warm ASBW in the future.
引用
收藏
页数:15
相关论文
共 82 条
[61]   Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes [J].
Smith, Ben ;
Fricker, Helen A. ;
Gardner, Alex S. ;
Medley, Brooke ;
Nilsson, Johan ;
Paolo, Fernando S. ;
Holschuh, Nicholas ;
Adusumilli, Susheel ;
Brunt, Kelly ;
Csatho, Bea ;
Harbeck, Kaitlin ;
Markus, Thorsten ;
Neumann, Thomas ;
Siegfried, Matthew R. ;
Zwally, H. Jay .
SCIENCE, 2020, 368 (6496) :1239-+
[62]  
Spence P, 2017, NAT CLIM CHANGE, V7, P595, DOI [10.1038/NCLIMATE3335, 10.1038/nclimate3335]
[63]   Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds [J].
Spence, Paul ;
Griffies, Stephen M. ;
England, Matthew H. ;
Hogg, Andrew McC ;
Saenko, Oleg A. ;
Jourdain, Nicolas C. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (13) :4601-4610
[64]   Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation [J].
Stewart, Andrew L. ;
Klocker, Andreas ;
Menemenlis, Dimitris .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (02) :834-845
[65]   Connecting Antarctic Cross-Slope Exchange with Southern Ocean Overturning [J].
Stewart, Andrew L. ;
Thompson, Andrew F. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (07) :1453-1471
[66]  
Stouffer R, 2019, **DATA OBJECT**, DOI 10.22033/ESGF/CMIP6.8888
[67]  
Swart N. C., 2019, ESGF, DOI [10.22033/ESGF/CMIP6.3610, DOI 10.22033/ESGF/CMIP6.3610]
[68]  
Tatebe H., 2018, MIROC MIROC6 MODEL O, DOI [10.22033/ESGF/CMIP6.5603, DOI 10.22033/ESGF/CMIP6.5603]
[69]   The Antarctic Slope Current in a Changing Climate [J].
Thompson, Andrew F. ;
Stewart, Andrew L. ;
Spence, Paul ;
Heywood, Karen J. .
REVIEWS OF GEOPHYSICS, 2018, 56 (04) :741-770
[70]   Interpretation of recent Southern Hemisphere climate change [J].
Thompson, DWJ ;
Solomon, S .
SCIENCE, 2002, 296 (5569) :895-899