Random walks and localization on the Penrose lattice

被引:3
作者
Kunz, M [1 ]
机构
[1] ETH Zurich, CH-8092 Zurich, Switzerland
来源
PHYSICA B | 2000年 / 293卷 / 1-2期
关键词
Penrose lattice; random walks;
D O I
10.1016/S0921-4526(00)00523-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the low energy limit of the integrated density of states for the standard tight-binding model on the Penrose lattice. A conjecture is presented for the existence of the so-called harmonic coordinates; it implies a central limit theorem for random walks. A simple approximation scheme is proposed to compute the diffusion constant. In a second part of the paper, we consider the effect of a diagonal term in the tight-binding hamiltonian, suppressing all local symmetries. This self-similar potential provides a simple mechanism for localization; the existence of gaps in the spectrum is demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:164 / 182
页数:19
相关论文
共 14 条
[1]  
[Anonymous], 1979, MONOGRAPHS STUDIES M
[2]  
DEBRUIJN NG, 1981, AKAD WETENSCH P A, V84, P51
[3]  
Di Vincenzo D. P., 1991, QUASICRYSTALS STATE
[4]  
Froehlich J., 1983, COMMUN MATH PHYS, V88, P151
[5]  
FUJIWARA T, 1991, QUASICRYSTALS STATE, P343
[6]  
HALL P, 1980, MARTINGALE LIMIT THE
[7]  
Halmos Paul R., 1950, Measure Theory, DOI DOI 10.1007/978-1-4684-9440-2
[8]   THE METHOD OF AVERAGING AND WALKS IN INHOMOGENEOUS ENVIRONMENTS [J].
KOZLOV, SM .
RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (02) :73-145
[9]   QUASI-CRYSTALS .1. DEFINITION AND STRUCTURE [J].
LEVINE, D ;
STEINHARDT, PJ .
PHYSICAL REVIEW B, 1986, 34 (02) :596-616
[10]  
Moody R. V., 1997, MATH LONG RANGE APER