Deep Outdoor Illumination Estimation

被引:116
作者
Hold-Geoffroy, Yannick [1 ]
Sunkavalli, Kalyan [2 ]
Hadap, Sunil [2 ]
Gambaretto, Emiliano [2 ]
Lalonde, Jean-Francois [1 ]
机构
[1] Univ Laval, Quebec City, PQ, Canada
[2] Adobe Res, San Jose, CA USA
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
关键词
D O I
10.1109/CVPR.2017.255
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a CNN-based technique to estimate high-dynamic range outdoor illumination from a single low dynamic range image. To train the CNN, we leverage a large dataset of outdoor panoramas. We fit a low-dimensional physically-based outdoor illumination model to the skies in these panoramas giving us a compact set of parameters (including sun position, atmospheric conditions, and camera parameters). We extract limited field-of-view images from the panoramas, and train a CNN with this large set of input image-output lighting parameter pairs. Given a test image, this network can be used to infer illumination parameters that can, in turn, be used to reconstruct an outdoor illumination environment map. We demonstrate that our approach allows the recovery of plausible illumination conditions and enables photorealistic virtual object insertion from a single image. An extensive evaluation on both the panorama dataset and captured HDR environment maps shows that our technique significantly outperforms previous solutions to this problem.
引用
收藏
页码:2373 / 2382
页数:10
相关论文
共 42 条
  • [1] Banerjee A, 2005, J MACH LEARN RES, V6, P1345
  • [2] Marr Revisited: 2D-3D Alignment via Surface Normal Prediction
    Bansal, Aayush
    Russell, Bryan
    Gupta, Abhinav
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5965 - 5974
  • [3] Barron Jonathan, 2013, IEEE T PATTERN ANAL, V37, P1670
  • [4] Intrinsic Scene Properties from a Single RGB-D Image
    Barron, Jonathan T.
    Malik, Jitendra
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 17 - 24
  • [5] Bell S, 2015, PROC CVPR IEEE, P3479, DOI 10.1109/CVPR.2015.7298970
  • [6] Clevert D.-A., 2016, INT C LEARN REPR ICL
  • [7] Debevec P., 1998, Computer Graphics. Proceedings. SIGGRAPH 98 Conference Proceedings, P189, DOI 10.1145/280814.280864
  • [8] Multiview Intrinsic Images of Outdoors Scenes with an Application to Relighting
    Duchene, Sylvain
    Riant, Clement
    Chaurasia, Gaurav
    Moreno, Jorge Lopez
    Laffont, Pierre-Yves
    Popov, Stefan
    Bousseau, Adrien
    Drettakis, George
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (05):
  • [9] Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
    Eigen, David
    Fergus, Rob
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2650 - 2658
  • [10] Esty W.W., 2003, Journal of Statistical Software, V8, P1, DOI [DOI 10.18637/JSS.V008.I17, 10.18637/jss.v008.i17]