Robust and Flexible Graph-based Semi-supervised Embedding

被引:0
作者
Dornaika, F. [1 ,2 ]
El Traboulsi, Y. [1 ]
Zhu, R. [1 ,3 ]
机构
[1] Univ Basque Country UPV EHU, San Sebastian, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[3] Univ Bourgogne Franche Comte, CNRS, LE2i, Belfort, France
来源
2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2018年
关键词
Semi-supervised learning; flexible graph-based embedding; sparsity preserving projection; robust loss function;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a robust and flexible graph-based semi-supervised embedding method for generic classification and recognition tasks. It combines the merits of sparsity preserving projections, margin maximization, and robust loss function. The latter reduces the effect of outliers on the regression model needed for mapping unseen examples. Furthermore, unlike label propagation semi-supervised schemes, our proposed method is a data embedding into a space whose dimension is not limited to the number of classes. The used robust norm combines the merits of matrix l(1,2) and l(2) norms. It is suited for the Laplacian distribution of outliers and the Gaussian distribution of samples with small losses. We provide experiments on four benchmark image datasets in order to study the performance of the proposed method. These experiments show that the proposed methods can be more discriminative than other state-of-the-art methods.
引用
收藏
页码:465 / 470
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2003, P 20 INT C MACH LEAR
[2]  
[Anonymous], 2007, PROC IEEE INT C COMP
[3]  
[Anonymous], 1990, Introduction to statistical pattern recognition
[4]  
de Sousa Celso Andre R., 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P160, DOI 10.1007/978-3-642-40994-3_11
[5]   Matrix exponential based semi-supervised discriminant embedding for image classification [J].
Dornaika, F. ;
El Traboulsi, Y. .
PATTERN RECOGNITION, 2017, 61 :92-103
[6]   Learning Flexible Graph-Based Semi-Supervised Embedding [J].
Dornaika, Fadi ;
El Traboulsi, Youssof .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) :206-218
[7]  
El Traboulsi Y., 2015, NEUROCOMPUTING
[8]   Ensemble Manifold Regularization [J].
Geng, Bo ;
Tao, Dacheng ;
Xu, Chao ;
Yang, Linjun ;
Hua, Xian-Sheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (06) :1227-1233
[9]   Deformed Graph Laplacian for Semisupervised Learning [J].
Gong, Chen ;
Liu, Tongliang ;
Tao, Dacheng ;
Fu, Keren ;
Tu, Enmei ;
Yang, Jie .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (10) :2261-2274
[10]   Semisupervised Kernel Matrix Learning by Kernel Propagation [J].
Hu, Enliang ;
Chen, Songcan ;
Zhang, Daoqiang ;
Yin, Xuesong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (11) :1831-1841