Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High-Fat Diet-Fed Mice

被引:30
|
作者
Li, Mengjie [1 ,2 ,3 ]
Zhao, Yuhan [1 ,2 ,3 ]
Wang, Yanan [1 ,2 ,3 ]
Geng, Ruixuan [1 ,2 ,3 ]
Fang, Jingjing [1 ,2 ,3 ]
Kang, Seong-Gook [4 ]
Huang, Kunlun [1 ,2 ,3 ]
Tong, Tao [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Minist Educ, Key Lab Funct Dairy,Key Lab Precis Nutr & Food Qu, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs PR China, Key Lab Safety Assessment Genetically Modified Or, Beijing 100083, Peoples R China
[3] Beijing Lab Food Qual & Safety, Beijing 100083, Peoples R China
[4] Mokpo Natl Univ, Dept Food Engn, Muangun 58554, South Korea
基金
北京市自然科学基金;
关键词
adiposity; eugenol; gut microbiota; high-fat diet; transcriptome; OBESITY; EXTRACT;
D O I
10.1002/mnfr.202200387
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scope Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, this study aims to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. Methods and results Five-week-old male C57BL/6J mice are fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduces obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevents HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes are positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity are accompanied by the transcriptomic reprogramming of white adipose tissue. Conclusion These findings demonstrate that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlight the potential of EU in obesity intervention as a functional dietary supplement.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice
    Yang, Yang
    Yu, Jing
    Huo, Jiayao
    Yan, Yaping
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (03) : 1562 - 1576
  • [32] The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice
    Bai, Yong-feng
    Wang, Si-wei
    Wang, Xiao-xiao
    Weng, Yuan-yuan
    Fan, Xue-yu
    Sheng, Hao
    Zhu, Xin-tian
    Lou, Li-jun
    Zhang, Feng
    NUTRITION & DIABETES, 2019, 9 (1)
  • [33] The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice
    Yong-feng Bai
    Si-wei Wang
    Xiao-xiao Wang
    Yuan-yuan Weng
    Xue-yu Fan
    Hao Sheng
    Xin-tian Zhu
    Li-jun Lou
    Feng Zhang
    Nutrition & Diabetes, 9
  • [34] Ligustrum robustum (Roxb.) blume extract modulates gut microbiota and prevents metabolic syndrome in high-fat diet-fed mice
    Chen, Man
    Zheng, Junping
    Zou, Xiaojuan
    Ye, Cheng
    Xia, Hui
    Yang, Ming
    Gao, Qinghua
    Yang, Qingxiong
    Liu, Hongtao
    JOURNAL OF ETHNOPHARMACOLOGY, 2021, 268
  • [35] Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet
    Lu, Chenyang
    Sun, Tingting
    Li, Yanyan
    Zhang, Dijun
    Zhou, Jun
    Su, Xiurong
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [36] Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice
    Cui, Xin
    Nguyen, Ngoc Ly T.
    Zarebidaki, Eleen
    Cao, Qiang
    Li, Fenfen
    Zha, Lin
    Bartness, Timothy
    Shi, Hang
    Xue, Bingzhong
    PHYSIOLOGICAL REPORTS, 2016, 4 (10):
  • [37] Natto alleviates hyperlipidemia in high-fat diet-fed mice by modulating the composition and metabolic function of gut microbiota
    Shang, Le -Yuan
    Zhang, Shuo
    Zhang, Min
    Sun, Xiao-Dong
    Wang, Qi
    Liu, Yu-Jie
    Zhao, Yan-Ni
    Zhao, Mei
    Wang, Peng-Jiao
    Gao, Xiu-Li
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [38] Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice
    Gan, Linyao
    Han, Jing
    Li, Chenyao
    Tang, Jing
    Wang, Xuebing
    Ma, Yue
    Chen, Yefu
    Xiao, Dongguang
    Guo, Xuewu
    FOOD BIOSCIENCE, 2023, 53
  • [39] Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice
    Xu, Xinxing
    Dai, Mei
    Lao, Fei
    Chen, Fang
    Hu, Xiaosong
    Liu, Yuping
    Wu, Jihong
    JOURNAL OF FUNCTIONAL FOODS, 2020, 68
  • [40] Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE-/- Mice
    Wu, Min
    Yang, Shengjie
    Wang, Songzi
    Cao, Yu
    Zhao, Ran
    Li, Xinye
    Xing, Yanwei
    Liu, Longtao
    FRONTIERS IN PHARMACOLOGY, 2020, 11