Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High-Fat Diet-Fed Mice

被引:32
|
作者
Li, Mengjie [1 ,2 ,3 ]
Zhao, Yuhan [1 ,2 ,3 ]
Wang, Yanan [1 ,2 ,3 ]
Geng, Ruixuan [1 ,2 ,3 ]
Fang, Jingjing [1 ,2 ,3 ]
Kang, Seong-Gook [4 ]
Huang, Kunlun [1 ,2 ,3 ]
Tong, Tao [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Minist Educ, Key Lab Funct Dairy,Key Lab Precis Nutr & Food Qu, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs PR China, Key Lab Safety Assessment Genetically Modified Or, Beijing 100083, Peoples R China
[3] Beijing Lab Food Qual & Safety, Beijing 100083, Peoples R China
[4] Mokpo Natl Univ, Dept Food Engn, Muangun 58554, South Korea
基金
北京市自然科学基金;
关键词
adiposity; eugenol; gut microbiota; high-fat diet; transcriptome; OBESITY; EXTRACT;
D O I
10.1002/mnfr.202200387
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scope Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, this study aims to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. Methods and results Five-week-old male C57BL/6J mice are fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduces obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevents HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes are positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity are accompanied by the transcriptomic reprogramming of white adipose tissue. Conclusion These findings demonstrate that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlight the potential of EU in obesity intervention as a functional dietary supplement.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion
    Huang, Shaoxiong
    Dong, Shiliang
    Lin, Lizhen
    Ma, Qiming
    Xu, Mengping
    Ni, Limei
    Fan, Qitong
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [32] Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice
    Liu, Min
    Ma, Lin
    Chen, Qichao
    Zhang, Pengyu
    Chen, Chao
    Jia, Lilin
    Li, Huajun
    JOURNAL OF FUNCTIONAL FOODS, 2018, 48 : 220 - 227
  • [33] Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota
    Wang, Pan
    Gao, Jianpeng
    Ke, Weixin
    Wang, Jing
    Li, Daotong
    Liu, Ruolin
    Jia, Yan
    Wang, Xuehua
    Chen, Xin
    Chen, Fang
    Hu, Xiaosong
    FREE RADICAL BIOLOGY AND MEDICINE, 2020, 156 : 83 - 98
  • [34] Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice
    Xie, Zhuqing
    Yao, Minghua
    Castro-Mejia, Josue L.
    Ma, Ming
    Zhu, Yuyan
    Fu, Xiong
    Huang, Qiang
    Zhang, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2023, 102
  • [35] Dietary Supplementation of Cedryl Acetate Ameliorates Adiposity and Improves Glucose Homeostasis in High-Fat Diet-Fed Mice
    Guo, Jingya
    Li, Mengjie
    Zhao, Yuhan
    Kang, Seong-Gook
    Huang, Kunlun
    Tong, Tao
    NUTRIENTS, 2023, 15 (04)
  • [36] Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice
    Yang, Yang
    Yu, Jing
    Huo, Jiayao
    Yan, Yaping
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (03) : 1562 - 1576
  • [37] Regulation of gut microbiota and intestinal metabolites by Poria cocos oligosaccharides improves glycolipid metabolism disturbance in high-fat diet-fed mice
    Zhu, Lin
    Ye, Cheng
    Hu, Baifei
    Xia, Hui
    Bian, Qinglai
    Liu, Yang
    Kong, Mingwang
    Zhou, Shuhan
    Liu, Hongtao
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2022, 107
  • [38] Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice
    Lili Li
    Yuting Wang
    Jingyi Yuan
    Zhengyi Liu
    Changqing Ye
    Song Qin
    Applied Microbiology and Biotechnology, 2020, 104 : 10217 - 10231
  • [39] Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice
    Cui, Xin
    Nguyen, Ngoc Ly T.
    Zarebidaki, Eleen
    Cao, Qiang
    Li, Fenfen
    Zha, Lin
    Bartness, Timothy
    Shi, Hang
    Xue, Bingzhong
    PHYSIOLOGICAL REPORTS, 2016, 4 (10):
  • [40] Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet
    Lu, Chenyang
    Sun, Tingting
    Li, Yanyan
    Zhang, Dijun
    Zhou, Jun
    Su, Xiurong
    FRONTIERS IN MICROBIOLOGY, 2017, 8