Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High-Fat Diet-Fed Mice

被引:30
|
作者
Li, Mengjie [1 ,2 ,3 ]
Zhao, Yuhan [1 ,2 ,3 ]
Wang, Yanan [1 ,2 ,3 ]
Geng, Ruixuan [1 ,2 ,3 ]
Fang, Jingjing [1 ,2 ,3 ]
Kang, Seong-Gook [4 ]
Huang, Kunlun [1 ,2 ,3 ]
Tong, Tao [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Minist Educ, Key Lab Funct Dairy,Key Lab Precis Nutr & Food Qu, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs PR China, Key Lab Safety Assessment Genetically Modified Or, Beijing 100083, Peoples R China
[3] Beijing Lab Food Qual & Safety, Beijing 100083, Peoples R China
[4] Mokpo Natl Univ, Dept Food Engn, Muangun 58554, South Korea
基金
北京市自然科学基金;
关键词
adiposity; eugenol; gut microbiota; high-fat diet; transcriptome; OBESITY; EXTRACT;
D O I
10.1002/mnfr.202200387
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scope Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, this study aims to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. Methods and results Five-week-old male C57BL/6J mice are fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduces obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevents HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes are positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity are accompanied by the transcriptomic reprogramming of white adipose tissue. Conclusion These findings demonstrate that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlight the potential of EU in obesity intervention as a functional dietary supplement.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Curcumin improves insulin sensitivity in high-fat diet-fed mice through gut microbiota
    Zhong, Yue
    Xiao, Yang
    Gao, Jing
    Zheng, Zhaozheng
    Zhang, Ziheng
    Yao, Lu
    Li, Dongmin
    NUTRITION & METABOLISM, 2022, 19 (01)
  • [22] Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota
    Yuan, Xubing
    Zheng, Junping
    Ren, Lishi
    Jiao, Siming
    Feng, Cui
    Du, Yuguang
    Liu, Hongtao
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [23] Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice
    Wang, Pan
    Li, Daotong
    Ke, Weixin
    Liang, Dong
    Hu, Xiaosong
    Chen, Fang
    INTERNATIONAL JOURNAL OF OBESITY, 2020, 44 (01) : 213 - 225
  • [24] Modulation of Gut Microbiota by Berberine Improves Steatohepatitis in High-Fat Diet-Fed BALB/C Mice
    Cao, Yi
    Pan, Qin
    Cai, Wei
    Shen, Feng
    Chen, Guang-Yu
    Xu, Lei-Ming
    Fan, Jian-Gao
    ARCHIVES OF IRANIAN MEDICINE, 2016, 19 (03) : 197 - 203
  • [25] Effect of Methionine Restriction on Gut Redox Status, Inflammation and Microbiota in High-Fat Diet-Fed Mice
    Zhang, Yuanhong
    Yang, Yuhui
    Wang, Yanan
    Zhang, Jiahong
    Guo, Haitao
    Shi, Yonghui
    Le, Guowei
    Shipin Kexue/Food Science, 2019, 40 (09): : 99 - 106
  • [26] Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice
    Zhai, Shixiang
    Qin, Song
    Li, Lili
    Zhu, Limeng
    Zou, Zhiqiang
    Wang, Li
    FEMS MICROBIOLOGY LETTERS, 2019, 366 (13)
  • [27] Tremella fuciformis polysaccharide reduces obesity in high-fat diet-fed mice by modulation of gut microbiota
    He, Gang
    Chen, Tangcong
    Huang, Lifen
    Zhang, Yiyuan
    Feng, Yanjiao
    Qu, Shaokui
    Yin, Xiaojing
    Liang, Li
    Yan, Jun
    Liu, Wei
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [28] Empagliflozin-induced gut microbiota alternation reduces obesity in high-fat diet-fed mice
    Shi, J.
    Qiu, H.
    Hou, N.
    Liu, Y.
    Han, F.
    Kan, C.
    Sun, X.
    DIABETOLOGIA, 2021, 64 (SUPPL 1) : 27 - 28
  • [29] Lactobacillus plantarum Alleviates Obesity by Altering the Composition of the Gut Microbiota in High-Fat Diet-Fed Mice
    Ma, Yong
    Fei, Yanquan
    Han, Xuebing
    Liu, Gang
    Fang, Jun
    FRONTIERS IN NUTRITION, 2022, 9
  • [30] Honeysuckle Berry (Lonicera caerulea L.) Inhibits Lipase Activity and Modulates the Gut Microbiota in High-Fat Diet-Fed Mice
    Kim, Jong-Yeon
    Lee, You-Suk
    Park, Eun-Jung
    Lee, Hae-Jeung
    MOLECULES, 2022, 27 (15):