Effects of alpha particles on the CTEM driven zonal flow in deuterium-tritium tokamak plasmas

被引:5
作者
Hussain, M. S. [1 ,2 ]
Guo, Weixin [1 ]
Wang, Lu [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Sch Elect & Elect Engn, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
alpha particles; ZF; CTEM turbulence; polarization shielding; TURBULENCE;
D O I
10.1088/1741-4326/ac4db8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effects of fusion-born alpha (alpha) particles on zonal flow (ZF) driven by collisionless trapped electron mode (CTEM) turbulence are analytically investigated, using gyrokinetic and bounce kinetic theories in the deuterium-tritium (D-T) tokamak plasmas. It is found that ZF growth rate is increased by alpha particles because of the reduction of polarization shielding as well as enhancement of CTEM instability. The results of this paper are qualitatively consistent with the enhancement of the level of residual ZF by alpha particles in (Cho and Hahm 2019 Nucl. Fusion 59 066026). The parametric dependence of ZF growth rate is also analyzed. The increment of ZF growth rate is further enhanced by alpha particles with higher fraction and steeper density profile. Besides, the dependence of ZF growth rate on electron temperature T-e could be changed qualitatively by the presence of alpha particles when T-i = T-e. Moreover, the difference of ZF growth rates in the presence of alpha particles with slowing down and equivalent Maxwellian distribution functions is very weak. These results could be very important for accurate prediction of the confinement in the future burning plasmas such as International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor.
引用
收藏
页数:11
相关论文
共 34 条
[1]   DESTABILIZATION OF TRAPPED-ELECTRON MODE BY MAGNETIC CURVATURE DRIFT RESONANCES [J].
ADAM, JC ;
TANG, WM ;
RUTHERFORD, PH .
PHYSICS OF FLUIDS, 1976, 19 (04) :561-566
[2]  
[Anonymous], 1998, P 17 INT FUS EN C YO
[3]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[4]   Microturbulence study of the isotope effect [J].
Bustos, A. ;
Navarro, A. Banon ;
Goerler, T. ;
Jenko, F. ;
Hidalgo, C. .
PHYSICS OF PLASMAS, 2015, 22 (01)
[5]   Residual zonal flows in tokamaks in the presence of energetic ions [J].
Cho, Y. W. ;
Hahm, T. S. .
NUCLEAR FUSION, 2019, 59 (06)
[6]   New High-Confinement Regime with Fast Ions in the Core of Fusion Plasmas [J].
Di Siena, A. ;
Bilato, R. ;
Goerler, T. ;
Navarro, A. Banon ;
Poli, E. ;
Bobkov, V ;
Jarema, D. ;
Fable, E. ;
Angioni, C. ;
Kazakov, Ye O. ;
Ochoukov, R. ;
Schneider, P. ;
Weiland, M. ;
Jenko, F. .
PHYSICAL REVIEW LETTERS, 2021, 127 (02)
[7]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[8]   Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry [J].
Duthoit, F. -X. ;
Brizard, A. J. ;
Hahm, T. S. .
PHYSICS OF PLASMAS, 2014, 21 (12)
[9]   Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulation [J].
Ernst, D. R. ;
Lang, J. ;
Nevins, W. M. ;
Hoffman, M. ;
Chen, Y. ;
Dorland, W. ;
Parker, S. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[10]   A review of zonal flow experiments [J].
Fujisawa, Akihide .
NUCLEAR FUSION, 2009, 49 (01)