Two-party Bell inequalities derived from combinatorics via triangular elimination

被引:43
作者
Avis, David [1 ]
Imai, Hiroshi [2 ,3 ]
Ito, Tsuyoshi [2 ]
Sasaki, Yuuya [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[2] Univ Tokyo, Dept Comp Sci, Bunkyo Ku, Tokyo 1130033, Japan
[3] ERATO Quantum Computat & Informat Project, Bunkyo Ku, Tokyo 1130033, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 50期
关键词
D O I
10.1088/0305-4470/38/50/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a relation between the two-party Bell inequalities for two-valued measurements and a high-dimensional convex polytope called the cut polytope in polyhedral combinatorics. Using this relation, we propose a method, triangular elimination, to derive tight Bell inequalities from facets of the cut polytope. This method gives two hundred million inequivalent tight Bell inequalities from currently known results on the cut polytope. In addition, this method gives general formulae which represent families of infinitely many Bell inequalities. These results can be used to examine general properties of Bell inequalities.
引用
收藏
页码:10971 / 10987
页数:17
相关论文
共 25 条
[1]  
Avis D., 2004, QUANTPH0404014
[2]  
AVIS D, 2005, P 4 JAP HUNG S DISCR
[3]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[4]   Decomposition and parallelization techniques for enumerating the facets of combinatorial polytopes [J].
Christof, T ;
Reinelt, G .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2001, 11 (04) :423-437
[5]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[6]   A relevant two qubit Bell inequality inequivalent to the CHSH inequality [J].
Collins, D ;
Gisin, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1775-1787
[7]   Bell inequalities for arbitrarily high-dimensional systems [J].
Collins, D ;
Gisin, N ;
Linden, N ;
Massar, S ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-404044
[8]   LIFTING FACETS OF THE CUT POLYTOPE [J].
DESIMONE, C .
OPERATIONS RESEARCH LETTERS, 1990, 9 (05) :341-344
[9]   COLLAPSING AND LIFTING FOR THE CUT CONE [J].
DESIMONE, C ;
DEZA, M ;
LAURENT, M .
DISCRETE MATHEMATICS, 1994, 127 (1-3) :105-130
[10]  
Deza M., 1997, ALGORITHMS COMBINATO, V15