New Monte Carlo determination of the critical coupling in φ24 theory

被引:19
作者
Bronzin, Simone [1 ]
De Palma, Barbara [2 ]
Guagnelli, Marco [1 ,2 ]
机构
[1] Via Antonini 20, Milan, Italy
[2] Univ Pavia, Via A Bassi 6, I-27100 Pavia, Italy
关键词
D O I
10.1103/PhysRevD.99.034508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the nonperturbative features of phi(4) theory in two dimensions, using Monte Carlo lattice methods. In particular we determine the ratio f(0) equivalent to g/mu(2), where g is the unrenormalized coupling, in the infinite volume and continuum limit. Our final result is f(0) = 11.055(24).
引用
收藏
页数:5
相关论文
共 18 条
[1]   Monte Carlo determination of the critical coupling in φ24 theory [J].
Bosetti, Paolo ;
De Palma, Barbara ;
Guagnelli, Marco .
PHYSICAL REVIEW D, 2015, 92 (03)
[2]   Two-dimensional light-front φ4 theory in a symmetric polynomial basis [J].
Burkardt, Matthias ;
Chabysheva, Sophia S. ;
Hiller, John R. .
PHYSICAL REVIEW D, 2016, 94 (06)
[3]   A Python']Python program for the implementation of the Γ-method for Monte Carlo simulations [J].
De Palma, Barbara ;
Erba, Marco ;
Mantovani, Luca ;
Mosco, Nicola .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 :294-301
[4]   High-precision calculations in strongly coupled quantum field theory with next-to-leading-order renormalized Hamiltonian Truncation [J].
Elias-Miro, Joan ;
Rychkov, Slava ;
Vitale, Lorenzo G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10)
[5]   NLO renormalization in the Hamiltonian truncation [J].
Elias-Miro, Joan ;
Rychkov, Slava ;
Vitale, Lorenzo G. .
PHYSICAL REVIEW D, 2017, 96 (06)
[6]   STABILITY OF THE VACUUM IN SCALAR FIELD MODELS IN 1 + 1 DIMENSIONS [J].
HARINDRANATH, A ;
VARY, JP .
PHYSICAL REVIEW D, 1988, 37 (04) :1076-1078
[7]   Performance of a worm algorithm in φ4 theory at finite quartic coupling [J].
Korzec, Tomasz ;
Vierhaus, Ingmar ;
Wolff, Ulli .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (07) :1477-1480
[8]   The diagonalization of quantum field Hamiltonians [J].
Lee, D ;
Salwen, N ;
Lee, D .
PHYSICS LETTERS B, 2001, 503 (1-2) :223-235
[9]  
Loinaz W, 1998, PHYS REV D, V58, DOI 10.1103/PhysRevD.58.076003
[10]   Matrix product states and variational methods applied to critical quantum field theory [J].
Milsted, Ashley ;
Haegeman, Jutho ;
Osborne, Tobias J. .
PHYSICAL REVIEW D, 2013, 88 (08)