Reduction of Jacobi manifolds via Dirac structures theory

被引:3
作者
Petalidou, F
da Costa, JMN
机构
[1] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[2] Univ Peloponnese, Fac Sci & Technol, Tripoli 22100, Greece
关键词
Dirac structures; generalized Lie bialgebroids; generalized Courant algebroids; Jacobi manifolds; reduction;
D O I
10.1016/j.difgeo.2005.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M, A, E) for which 1 is an admissible function and Jacobi quotient manifolds of M. We study Jacobi reductions from the point of view of Dirac structures theory and we present some examples and applications. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 304
页数:23
相关论文
共 32 条
  • [1] COURANT T, 1988, SEMINAIRE SUD RHODAN, P39
  • [2] DIRAC MANIFOLDS
    COURANT, TJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) : 631 - 661
  • [3] Dirac structures for generalized Lie bialgebroids
    da Costa, JMN
    Clemente-Gallardo, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (07): : 2671 - 2692
  • [4] Compatible Jacobi manifolds: geometry and reduction
    da Costa, JMN
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 1025 - 1033
  • [5] DACOSTA JMMN, 1989, CR ACAD SCI I-MATH, V308, P101
  • [6] DACOSTA JMN, 1990, CR ACAD SCI I-MATH, V310, P411
  • [7] DASILVA AC, 1999, U CALIFORNIA BERKELE, V10
  • [8] DAZORD P, 1991, J MATH PURE APPL, V70, P101
  • [9] Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
  • [10] Grabowski J., 1992, Journal of Geometry and Physics, V9, P45, DOI 10.1016/0393-0440(92)90025-V