The paraunitary group of a von Neumann algebra

被引:7
作者
Dietzel, Carsten [1 ]
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
关键词
GARSIDE GROUPS; CLASSIFICATION;
D O I
10.1112/blms.12621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the pure paraunitary group over a von Neumann algebra coincides with the structure group of its projection lattice. The structure group of an arbitrary orthomodular lattice (OML) is a group with a right invariant lattice order, and as such it is known to be a complete invariant of the OML. The pure paraunitary group PPU(A)$\mbox{PPU}(\mathcal {A})$ of a von Neumann algebra A$\mathcal {A}$ is a normal subgroup of the paraunitary group PU(A)$\mbox{PU}(\mathcal {A})$ with the group U(A)$\mbox{U}(\mathcal {A})$ of unitaries in A$\mathcal {A}$ as cokernel. By a result of Heunen and Reyes, A$\mathcal {A}$ is determined by the action of U(A)$\mbox{U}(\mathcal {A})$ on PPU(A)$\mbox{PPU}(\mathcal {A})$. In this sense, it follows that the paraunitary group is a complete invariant of any von Neumann algebra.
引用
收藏
页码:1220 / 1231
页数:12
相关论文
共 36 条
[1]  
[Anonymous], 1951, Summa Brasil. Math, DOI DOI 10.24033/BSMF.1545
[2]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[3]  
Artin E., 1925, Abh. Math. Semin. Univ. Hamb., V4, P47, DOI DOI 10.1007/BF02950718
[4]  
Bigard A., 1977, Groupes et Anneaux Rticuls, DOI DOI 10.1007/BFB0067004
[5]   ARTIN GROUPS AND COXETER GROUPS [J].
BRIESKORN, E ;
SAITO, K .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :245-+
[6]   THE DUAL OF A SPACE OF VECTOR MEASURES [J].
CAMBERN, M ;
GREIM, P .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (03) :373-378
[7]   FACTOR NOT ANTI-ISOMORPHIC TO ITSELF [J].
CONNES, A .
ANNALS OF MATHEMATICS, 1975, 101 (03) :536-554
[8]  
Darnel M., 1995, Theory of Lattice-Ordered Groups, V187
[9]   Gaussian groups and Garside groups, two generalisations of Artin groups [J].
Dehornoy, P ;
Paris, L .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 :569-604
[10]  
Dehornoy P, 2015, EMS TRACTS MATH, V22, P1, DOI 10.4171/139