Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode

被引:103
作者
Gupta, Shally [1 ]
Yadav, Ashish [1 ]
Verma, Nishith [1 ,2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol Kanpur, Ctr Environm Sci & Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Microbial fuel cell; Bioelectricity generation; Wastewater treatment; Hexavalent chromium; Carbon electrodes; Transition metal nanoparticles; HEXAVALENT CHROMIUM REDUCTION; POWER-GENERATION; ELECTRICITY-GENERATION; AQUEOUS-SOLUTIONS; WASTE-WATER; CATHODE; PERFORMANCE; FABRICATION; TRIVALENT; RECOVERY;
D O I
10.1016/j.cej.2016.08.130
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An alumina (AA)/nickel (Ni) nanoparticles (NPs)-dispersed carbon nanofiber (CNF)-based electrode was for the first time used in a mediatorless double-chambered microbial fuel cell (MFC) for the simultaneous electrochemical reduction of hexavalent chromium (Cr(VI)) in water and generation of bioelectricity. Whereas the AA NPs increased the electrical conductivity of the electrode, the Ni NPs served as the catalyst for growing the CNFs on an activated carbon microfiber substrate by chemical vapor deposition and for catalyzing the Cr(VI) reduction at the cathode. Such MFCs showed a complete removal of Cr(VI) at 100 ppm-concentration, achieving a significantly high reduction rate of similar to 2.13 g/m(3)-h, besides generating electricity with the maximum power density of similar to 1540 mW/m(2), open circuit potential of 900 mV and cathodic columbic efficiency of 93%. The MFCs using the inexpensive transition metals-dispersed CNF electrode, prepared in this study, has the potential for the efficient treatment of the similar electron acceptor metals-laden wastewater, with the simultaneous generation of electricity. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:729 / 738
页数:10
相关论文
共 40 条
[1]   Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions [J].
Avila, M. ;
Burks, T. ;
Akhtar, F. ;
Gothelid, M. ;
Lansaker, P. C. ;
Toprak, M. S. ;
Muhammed, M. ;
Uheida, A. .
CHEMICAL ENGINEERING JOURNAL, 2014, 245 :201-209
[2]  
Baral Anil., 2002, ENVIRON SCI POLICY, V5, P121, DOI [DOI 10.1016/S1462-9011(02)00028-X, 10.1016/S1462-9011(02)00028-X]
[3]   Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review [J].
Ben Liew, Kien ;
Daud, Wan Ramli Wan ;
Ghasemi, Mostafa ;
Leong, Jun Xing ;
Lim, Wee Su ;
Ismail, Manal .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) :4870-4883
[4]   The possible reduction of alumina to aluminum using hydrogen [J].
Braaten, O ;
Kjekshus, A ;
Kvande, H .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2000, 52 (02) :47-53
[5]   Synthesis of carbon nanofibers:: effects of Ni crystal size during methane decomposition [J].
Chen, D ;
Christensen, KO ;
Ochoa-Fernández, E ;
Yu, ZX ;
Totdal, B ;
Latorre, N ;
Monzón, A ;
Holmen, A .
JOURNAL OF CATALYSIS, 2005, 229 (01) :82-96
[6]   Recovery of silver from wastewater coupled with power generation using a microbial fuel cell [J].
Choi, Chansoo ;
Cui, Yufeng .
BIORESOURCE TECHNOLOGY, 2012, 107 :522-525
[7]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510
[8]   Fabrication and CO2 capture performance of silicon carbide derived carbons from polysiloxane [J].
Duan, Liqun ;
Ma, Qingsong ;
Chen, Zhaohui .
MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 203 :24-31
[9]   Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon Part I. Nickel catalysts [J].
Ermakova, MA ;
Ermakov, DY ;
Kuvshinov, GG .
APPLIED CATALYSIS A-GENERAL, 2000, 201 (01) :61-70
[10]   Reduction of hexavalent chromium by copper [J].
Goeringer, S ;
de Tacconi, NR ;
Chenthamarakshan, CR ;
Rajeshwar, K .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (08) :891-897