Dynamics of breakup of multiple vortices in Gross-Pitaevskii equations of superfluids

被引:2
作者
Jonsson, B. L. G. [1 ]
Ovchinnikov, Yu. N. [2 ,3 ]
Sigal, I. M. [4 ]
Ting, F. S. T. [5 ]
机构
[1] Royal Inst Technol KTH, Sch Elect Engn, S-10044 Stockholm, Sweden
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[5] Lakehead Univ, Dept Math, Thunder Bay, ON P7B 5E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bose-Einstein condensation; eigenvalues and eigenfunctions; nonlinear differential equations; Schrodinger equation; superfluidity; vortices; GINZBURG-LANDAU EQUATION; VORTEX; STABILITY; WAVES;
D O I
10.1063/1.3629473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the Gross-Pitaevskii equation of the theory of superfluidity, i.e., the nonlinear Schroumldinger equation of the Ginzburg-Landau type. We investigate the dynamics of the breakup of the double vortex. More specifically, we prove instability of the double vortex, compute the complex eigenvalue responsible for this instability, and derive the dynamical equation of motion of (centers of) single vortices resulting from splitting of the double vortex. We expect that our analysis can be extended to vortices of higher degree and to magnetic and Chern-Simmons vortices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3629473]
引用
收藏
页数:16
相关论文
共 29 条